Edwin Lughofer
- PhD in applied mathematics (JKU Linz, 2005)
- Key Researcher @ FLLL (Department of Knowledge-Based Mathematical Systems, Johannes Kepler University Linz)
- CV-long
- Books and Position Papers Journal Articles Conference Papers
- Awards: Best Paper at EFS 2006, Best Paper Finalist at GEFS 2008, Best Paper at MIM 2013, Best Paper at IEEE Intelligent Systems 2016
-
News:
- Evolving Multi-Label Fuzzy Classifier - Open Access Article (2022)
- Publication Chair of the IEEE Evolving and Adaptive Intelligent Systems Conference 2022, Larnaca, Cyprus, 2022
- Edited Book about "Predictive Maintenance in Dynamic Systems" with high-end research topics and modern industrial applications appeared in March 2019 (Springer New York). --- Link to Amazon
- Member of the Editorial Board of 'Evolving Systems' (since 01.01.2021)
- Associate Editor of 'IEEE Transactions on Fuzzy Systems' (since 01.01.2020)
- Member of the Editorial Board of 'Information Sciences' (since 01.01.2018)
- DOWNLOAD: A Comprehensive Work of Reference on Evolving Fuzzy Systems (2002-2015), Chapter 3 in Handbook of Computational Intelligence (World Scientific)
- Planned Special Issues on Several Topics....
-
Core Expertise: Evolving (Intelligent) Systems, Fuzzy Systems, Soft Computing, Machine Learning, Classification and Clustering, Online Stream Mining and Modeling, Active Learning, Robustness and Interpretability, Decision Making, System Identification, Fault Detection and Identification, Quality Control, Predictive Maintenance
PROJECTS:
- Prediction and Adaptation in Predictive Maintenance Systems: Strategic Project in collaboration with LCM
- Interactive Machine Learning with Evolving Fuzzy Systems: Basic FWF Research Project (Investigator)
- Smart Data Mining and Predictive Systems: Multi-Firm Project in collaboration with LCM and Engel
- Data-Driven and Knowledge-Based Modelling for Blast Furnace Processes: Multi-Firm Project in Collaboration with LCM and Voestalpine
- imPACts (K-Project): Industrial Methods for Process Analytical Chemistry – From Measurement Technologies to Information Systems (Key Researcher of MP3)
- mvControl (FFG "IKT of the Future"): Generating process feedback from heterogeneous data sources in quality control; in collaboration with the coordinator Profactor and Sony DADC Austria / Stratec Consumables (Key Researcher)
- useML (FFG "IKT of the Future"): Improving the usability of machine learning in industrial inspection systems; in collaboration with the coordinator Profactor and 2 industrial partners (Key Researcher)
- Increasing the Transparency of LCM/ACCM in International Research Fora: Organization and Publication Activities on International Level with the support of Linz Center of Mechatronics / Austrian Center of Competence in Mechatronics
- HOPL (K-Project): Heuristic Optimization in Production and Logistics
- TransLearn (SRP) - Transfer Learning with Soft Computing Models for Regression Problems: Strategic Research Project with SCCH
- AEDA (K-Project): Advanced Engineering Design Automation
- PAC (K-Project): Process Analytical Chemistry - Data Acquistion and Data Processing (Key Researcher in SP1); National K-Project sponsored by the FFG, 9 industrial and 7 academic research partners
- IREFS (bilateral FWF/DFG research project): Interpretable and Reliable Evolving Fuzzy Systems (Initiator)
- Condition Monitoring with Data-Driven Models: Strategic Project with ACCM (Area 6) (Key Researcher)
- Performance Optimization of Electrical Drives: Strategic Project with ACCM (Area 4) (Key Researcher)
- ASHMOSD (National Research Project): Austrian Structural Health Monitoring System Demonstrator
- DynaVis (EU-Project): Dynamically adaptive image classification framework; combining machine learning with image processing techniques: www.dynavis.org; technical representative of JKU (Key Researcher)
- SynteX (EU-Project): Measuring Feelings and Expectations Associated with Textures: www.syntex.or.at
- Technology Transfer sponsored by the Upperaustrian technology and research promotion
- AMPA (EU-Project): Automatic Measurement Plausibility Analysis at engine test benches: research and development in data-based modelling, nonlinear system identification and fault detection; technical representative of JKU (Key Researcher) in AMPA EU-Project; together with 8 partners in Europe
- Exchange of know-how in data-driven evolving fuzzy systems with Lancaster University, sponsored by the Royal Society Grant, United Kingdom
ACTIVITIES (Organizing, Editing):
- Main Organizer (Chair) of the IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS) 2014, Linz, Austria
- Publication Chair of the IEEE Evolving and Adaptive Intelligent Systems Conference 2020, Bari, Italy, 2020
- Publicity Co-Chair of the ACM International Conference on Innovative Computing and Management Science, 2020, Taiwan.
- Program Co-Chair of the 17th IEEE International Conference on Machine Learning and Applications (ICMLA) 2018, Orlando, Florida, U.S.A.
- Keynote Tutorial Chair of the IEEE Symposium Series on Computational Intelligence (SSCI) 2018, Bengaluru, India
- Publication Chair of the 3rd INNS Conference on Big Data and Deep Learning, Bali, Indonesia, 2018
- Program Chair of the IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS) 2018, Rhodos Island, Greece
- Publication Chair of the IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS) 2017, Ljubljana, Slovenia
- Publication Chair of the IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS) 2016, Natal, Brazil
- Publication Chair of the IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS) 2015, Douai, France
-
Area Chair (Fuzzy Modeling and Identification) of the IEEE International Conference on Fuzzy Systems 2015, Istanbul, 2015
- Associate Editor and Member of the Editorial Board of the International Journals 'Information Sciences' (Elsevier), 'Complex and Intelligent Systems' (Springer), 'Information Fusion' (Elsevier) and 'Inventions' (MDPI)
- Associate Editor of the International Journals 'IEEE Transactions on Fuzzy Systems' (IEEE press) and 'Soft Computing' (Springer)
- Guest Editor of the International Journal ’Evolving Systems’ (Springer)
- Committee Member of the IEEE Students Research Grant
-
Committee Member of the IEEE Computational Intelligence Society Task Force 'Data Mining and Big Data Analytics'
- Co-Organizer of the Special Issue on 'Advanced Soft Computing for Prognostic Health Management' in Applied Soft Computing (9 papers accepted).
- Co-Organizer of the Special Issue on 'Big Data and Situation-Aware Technology for Smarter Healthcare' in Journal of Medical and Biological Engineering (15 papers accepted).
- Co-Organizer of the Special Issue on 'Online Real-Time Learning Strategies for Data Streams' in Neurocomputing Journal (10 papers accepted).
- Co-Organizer of the Special Issue on Data Stream Mining and Soft Computing Applications in Applied Soft Computing Journal (15 papers accepted).
- Co-Organizer of the Special Issue on 'Hybrid and Ensemble Techniques in Soft Computing: Recent Advances and Emerging Trends' in Soft Computing Journal (21 papers accepted).
- Co-Organizer of the Special Issue 'Evolving Soft Computing Techniques' at the Applied Soft Computing Journal (Elsevier) (16 papers accepted).
- Co-Organizer of the Special Issue 'Hybrid and Ensemble Methods in Machine Learning' at the Journal of Universal Computer Sciences (7 papers accepted)
- Co-Organizer of the Special Issue ’On-line Fuzzy Machine Learning and Data Mining’ at the international journal Information Sciences (Publisher: Elsevier, 15 papers accepted).
- Co-Organizer of 15 Special Sessions in the fields of Evolving Systems and Machine Learning at International Conferences since 2010
ACTIVITIES (Keynotes, Committee Memberships, Reviewing):
- Keynote Talk at the IEEE Evolving and Adaptive Intelligent Systems Conference 2020, Bari, Italy, 2020
- Keynote Talk at the SYNASC 2018, the 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Timisoara, Romania (19th to 23rd of September 2018)
- Keynote Speech at the International Chemometrics Research Meeting, Berg en Dal, Netherlands (10-14th of September 2017)
- Keynote Speech at the IEEE 2016 Conference on Evolving and Adaptive Intelligent Systems, Natal, Brazil (23-25th of May 2016)
-
Keynote Speech at the 7th International Conference on Fuzzy Computation Theory and Applications, Lissabon, Portugal (12-14th of November 2015)
- Member of the Programme Committee at the MLHMI 2021, SETCAC 2020, ICMLA 2020, IAL 2020, SIRS 2020, CoCoNet 2020, SMC 2020, CIKM 2020, ITIA 2020, ICICS 2020, ICCCI 2020, FCTA 2020, FSDM 2020, KES 2020, IPMU 2020, ICCPR 2019, MLHMI 2019, SMVH 2019, ACIIDS 2019, CoCoNet 2019, CCIOT 2019, AITC 2019, IAL 2019, KSE 2019, ICMLA 2019, EUSFLAT 2019, SSIP 2019, ICMS 2019, MLIS 2019, ICICS 2019, FUZZ-IEEE 2019, ICAASOC 2019, IEEE Big Data Congress 2019, ICACCI 2018, ACIIDS 2019, IAL 2018, ASPAI 2019, NICS 2018, SSIP 2018, KSE 2018, ACMINS'18, SETCAC'18, AIS 2018, ISI'18, NLP'18, ICCCI 2018, SIRS 2018, IEEE Big Data Congress 2018, IJCCI 2018, IEEE EAIS 2018, SigTelCom 2018, IEEE SSCI 2018 (CIDM workshop), ICMLA 2017, IEEE SMC 2017, MADS 2017, ICCCI 2017, IJCCI 2017, ICNC-FSKD 2017, SpaCCS 2017, NICS 2017, NLP 2017, ACMiNS 2017, SIMUL 2017, SETCAC 2017, ICICS 2017, ICMLC 2017, ICACCI 2017, ICCMIT 2017, ACIIDS 2017, ISI 2016, SETCAC'16, ICNC-FSKD 2016, ICMLA 2016, AML ICSS 2016, SigTelCom 2017, SIMUL 2016, IEEE EAIS 2016, NAFOSTED 2016, IPMU 2016, SMC 2016, ICCCI 2016, NLP 2016, CoCoNet 2015, ICMLA 2015, IEEE EALS 2015, FCTA 2015, SIRS 2015, ComManTel 2015, ACIIDS 2016, ICMLA 2015, IEEE EALS 2015, ICACCI 2015, NLP 2015, ICCCI 2015, ICIP 2015, ACCIDS 2015, IEEE SPICES 2015, PECCS 2015, ICMLA 2014, ICNC'14-FSKD'14, IEEE SMC 2014, Simultech 2014, ICIP 2014, ICAIS 2014, NLP-2014, ADM-2014, ICACCI-2014, FCTA 2014, ACIIDS 2014, IEEE SMC 2013, ICMLA 2013, FCTA 2013, FSKD 2013, ISINCO 2014, 2013, 2012 and 2011, ADM'13, NLP'13, ACIIDS 2013, SMPS 2012, ICAIS'11, ISINCO 2011, MMAML 2011 and 2012, EAIS'11, EIS'10, the IEEE ICMLA 2010 and 2011, the EUSFLAT/IFSA 2009, the 2009 ESDIS and of the PICom 2009
-
Member of the Working Group on Learning and Data Mining and the ETTC Task Force on Machine Learning
- Reviewer for the Journals (at least 3 papers) IEEE Transactions on Fuzzy Systems (5 Year IF 2016: 8.29), Fuzzy Sets and Systems (2.78), Evolving Systems (1.8), IEEE Transactions on Cybernetics (former SMC-B, 7.68), Pattern Recognition (Letters) (4.99), Pattern Analysis and Applications (1.36), Information Sciences (4.73), Information Fusion (5.78), Expert Systems with Applications (3.53), Knowledge-Based Systems (4.51), Engineering Applications of Artifical Intelligence (3.18), Journal of Process Control (3.12), Int. Journal of Approximate Reasoning (2.17), International Journal of Uncertainty+Fuzziness and Knowledge-Based Systems (1.23), Soft Computing (2.22), Applied Soft Computing (3.81), IEEE Transactions on Neural Networks and Learning Systems (6.18), Neurocomputing (3.21), Chemometrics and Intelligent Laboratory Systems (2.59), Journal of Artificial Intelligence Research (2.56), IEEE Transactions on Intelligent Systems and Technology (4.05), Kybernetes (0.98), IEEE Transactions on Evolutionary Computation (10.37), Signal Processing (3.0), Sensors (2.96), IEEE Transactions on Semiconductor Manufacturing (1.3), Entropy (1.95), Advances of Fuzzy Systems (), IEEE Journal of Biomedical and Health Informatics (3.85), Textile Research Journal (1.65), International Journal of Production Research (2.39), Symmetry (1.26), Concurrency and Computation (1.22) and others
PUBLICATIONS:
BOOKS:
-
Edwin Lughofer and Moamar Sayed-Mouchaweh, Predictive Maintenance in Dynamic Systems --- Advanced Methods, Decision Support Tools and Real-World Applications, ca. 592 Pages, ca. 200 Illustrations, Springer New York, to appear, March 2019. (cited 32, Google Scholar,).
-
Edwin Lughofer, Evolving Fuzzy Systems - Methodologies, Advanced Concepts and Applications, Springer Verlag, Berlin Heidelberg, 2011, ISBN: 978-3-642-18086-6, 460 pages, 148 figures, 263 images, 26 tables (cited 420, Google Scholar, "h").
- Moamar Sayed-Mouchaweh, Edwin Lughofer, Learning in Non-stationary Environments: Methods and Applications, Springer Verlag, New York, 2012. (cited 162 times, Google Scholar, "h")
BOOK CHAPTERS:
-
E. Lughofer and M. Sayed-Mouchaweh. Prologue --- Predictive Maintenance in Dynamic Systems. Predictive Maintenance in Dynamic Systems, editors: E. Lughofer and M. Sayed-Mouchaweh, Springer, pp. 1-23, 2019.
-
E. Lughofer, A.C. Zavoianu, M. Pratama and T. Radauer. Automated Process Optimization in Manufacturing Systems based on Static and Dynamic Prediction Models. in: Predictive Maintenance in Dynamic Systems, editors: E. Lughofer and M. Sayed-Mouchaweh, Springer, 486-531, 2019.
-
M. Pratama, A. Ashfahani, E. Lughofer and S. Huang. An Evolving RFID Localization Model in The Manufacturing Shopfloor. in: Predictive Maintenance in Dynamic Systems, editors: E. Lughofer and M. Sayed-Mouchaweh, Springer, pp. 287-309, 2019.
-
Edwin Lughofer, Robust Data-Driven Fault Detection in Dynamic Process Environments Using Discrete Event Systems. in: Diagnosability, Security and Safety of Hybrid Dynamic and Cyber-Physical Systems, editor: M. Sayed-Mouchaweh, pp. 73--116, 2018.
-
Edwin Lughofer, Evolving Fuzzy Systems --- Fundamentals, Reliability, Interpretability, Useability, Applications (a comprehensive work of reference), in: Handbook on Computational Intelligence, editor: Plamen Parvanov Angelov, World Scientific, pp. 67-135, 2016 - DOWNLOAD
-
Edwin Lughofer, Flexible Evolving Fuzzy Inference Systems from Data Streams (FLEXFIS++), in: Learning in Non-Stationary Environments: Methods and Applications, editors: Moamar Sayed-Mouchaweh and Edwin Lughofer, Springer, New York, 2012, pp. 205-246
-
Edwin Lughofer, Christian Eitzinger and Carlos Guardiola, On-line Quality Control with Flexible Evolving Fuzzy Systems, in: Learning in Non-Stationary Environments: Methods and Applications, editors: Moamar Sayed-Mouchaweh and Edwin Lughofer, Springer, New York, 2012, pp. 375-406
-
Davy Sannen, Jean-Michel Papy, Steve Vandenplas, Edwin Lughofer and Hendrik van Brussel, Incremental Classifier Fusion and its Application in Industrial Monitoring and Diagnostics, in: Learning in Non-Stationary Environments: Methods and Applications, editors: Moamar Sayed-Mouchaweh and Edwin Lughofer, Springer, New York, 2012, pp. 153-184
-
Edwin Lughofer, Evolving Fuzzy Models - Incremental Learning, Stability and Interpretability Issues, Applications, VDM Verlag, Saarbrücken, 2008 (book issue of PhD thesis)
-
Edwin Lughofer, Data-Driven Incremental Learning of Takagi-Sugeno Fuzzy Models, PhD-Thesis, Department of Knowledge-Based Mathematical Systems, University Linz, 2001-2005
-
Edwin Lughofer. Towards Robust Evolving Fuzzy Systems, book chapter in Evolving Intelligent Systems - Methodologies and Applications, editors: Plamen Angelov, Dimitar Filev and Nik Kasabov, John Wiley and Sons, 2010, pp. 87-126
-
Erich Peter Klement*, Edwin Lughofer, Johannes Himmelbauer and Bernhard Moser, Data-Driven and Knowledge-Based Modelling, chapter in Hagenberg Research, editors: Michael Affenzeller, Bruno Buchberger, Alois Ferscha, Michael Haller, Tudor Jebelean, Erich Peter Klement, Josef Kueng, Peter Paule, Birgit Proell, Wolfgang Schreiner, Gerhard Weiss, Roland Wagner, Wolfram Woess, Robert Stubenrauch and Wolfgang Windsteiger, Springer Verlag, pp. 237-279, 2009
- Christian Eitzinger*, James E. Smith, Edwin Lughofer and Davy Sannen, Lernfaehige Inspektionssysteme, Automatisierungsatlas, SPS Magazin, 2009, pp. 370-372
JOURNAL PAPERS:
-
E. Lughofer, M. Pratama and I. Skrjanc, Online Bagging of Evolving Fuzzy Systems, Information Sciences, on-line and in press, 2021, doi: https://doi.org/10.1016/j.ins.2021.04.041
-
P.V. De Campos Souza and E. Lughofer, An Evolving Neuro-Fuzzy System based on Uni-Nullneurons with Advanced Interpretability Capabilities, Neurocomputing, to appear, 2021
-
E. Lughofer, Improving the Robustness of Recursive Consequent Parameters Learning in Evolving Neuro-Fuzzy Systems, Information Sciences, vol. 545, pp. 555-574, 2021, https://doi.org/10.1016/j.ins.2020.09.026
-
P.V. De Campos Souza and E. Lughofer, An Advanced Interpretable Fuzzy Neural Network Model based on Uni-Nullneuron constructed from N-uninorms, Fuzzy Sets and Systems, on-line and in press, https://doi.org/10.1016/j.fss.2020.11.019, 2021
-
E. Lughofer, R. Pollak, C. Feilmayr, M. Schatzl and S. Saminger-Platz, Prediction and Explanation Models for Hot Metal Temperature, Silicon Concentration and Cooling Capacity in Ironmaking Blast Furnaces, Steel Research International, to appear, 2021
-
A.C. Zavoianu, E. Lughofer, R. Pollak, C. Eitzinger, T. Radauer, A Soft-Computing Framework for Automated Optimization of Multiple Product Quality Criteria with Application to Micro-Fluidic Chip Production, Applied Soft Computing, articleID: 106827, 2020, https://doi.org/10.1016/j.asoc.2020.10682
-
P.V. De Campos Souza and E. Lughofer, Interpretable Hybrid Model in the Identification of Heart Sounds, Sensors, vol. 20 (22), 2020, articleID: 6477
-
E. Lughofer, A.C. Zavoianu, R. Pollak, M. Pratama, P. Meyer-Heye, H. Zörrer, C. Eitzinger and T. Radauer, On-line Anomaly Detection with Advanced Independent Component Analysis of Multi-Variate Residual Signals from Causal Relation Networks, Information Sciences, vol. 537, pp. 425-451, 2020, https://doi.org/10.1016/j.ins.2020.06.034
-
P.V. De Campos Souza, H. Ponce and E. Lughofer, Evolving Fuzzy Neural Hydrocarbon Networks: A Model Based on Organic Compounds, Knowledge-Based Systems, vol. 203, article nr: 106099, 2020, https://doi.org/10.1016/j.knosys.2020.106099
-
P.V. De Campos Souza, L.C. Bambirra Torres, G.R. Lacerda Silva, A.P. Braga, E. Lughofer, An Advanced Pruning Method in the Architecture of Extreme Learning Machines using L1-regularization and Bootstrapping, Electronics, vol. 9(5), ID: 811, 2020, https://doi.org/10.3390/electronics9050811
-
S. Benmoussa, M. Djeziri, M. Sayed-Mouchaweh, E. Lughofer, Fault diagnosis and prognosis based on physical knowledge and reliability data: application to MOS Field-Effect Transistor, Microelectronics Reliability, vol. 110, ID: 113682, 2020, https://doi.org/10.1016/j.microrel.2020.113682
-
E. Lughofer and R. Nikzad-Langerodi, Robust Generalized Fuzzy Systems Training from High-Dimensional Time-Series Data using Local Structure Preserving PLS, IEEE Transactions on Fuzzy Systems, vol. 28 (11), 2020, DOI: 10.1109/TFUZZ.2019.2945535
-
W. Zellinger, T. Grubinger, M. Zwick, E. Lughofer, H. Schöner, T. Natschläger, S. Saminger-Platz, Multi-Source Transfer Learning of Time Series in Cyclical Manufacturing, Journal of Intelligent Manufacturing, vol. 31, pp. 777-787, 2020, https://doi.org/10.1007/s10845-019-01499-4
-
M. Ferdaus, M. Pratama, S. G. Anavatti, M. A. Garratt and E. Lughofer, PAC: A Novel Self-Adaptive Neuro-Fuzzy Controller for Micro Aerial Vehicles, Information Sciences, vol. 512, pp. 481-505, 2020, https://doi.org/10.1016/j.ins.2019.10.0012
-
A. Ashfahani, M. Pratama, E. Lughofer, and Y.-S. Ong, DEVDAN: Deep Evolving Denoising Autoencoder, Neurocomputing, vol. 390, pp. 297-314, 2020
-
E. Lughofer, A.-C. Zavoianu, R. Pollak, M. Pratama, P. Meyer-Heye, H. Zörrer, C. Eitzinger, T. Radauer, Autonomous Supervision and Optimization of Product Quality in a Multi-Stage Manufacturing Process based on Self-Adaptive Prediction Models, Journal of Process Control, vol 76, pp. 27-45, 2019, https://doi.org/10.1016/j.jprocont.2019.02.005
-
Igor Skrjanc, Jose Iglesias, Araceli Sanchis, Daniel Leite, Edwin Lughofer and Fernando Gomide, Evolving Fuzzy and Neuro-Fuzzy Approaches in Clustering, Regression, Identification, and Classification: A Survey, Information Sciences, vol. 490, pp. 344-368, 2019, https://doi.org/10.1016/j.ins.2019.03.060 (cited 95 times, Google Scholar, "h")
-
I. Skrjanc, S. Blazic, E. Lughofer and D. Dovzan, Inner Matrix Norms in evolving Cauchy Possibilistic Clustering for Classification and Regression from Data Streams, Information Sciences, vol. 478, pp. 540-563, 2019, https://doi.org/10.1016/j.ins.2018.11.040
-
W. Zellinger, B.A. Moser, T. Grubinger, E. Lughofer, T. Natschläger and S. Saminger-Platz. Robust Unsupervised Domain Adaptation for Neural Networks via Moment Alignment. Information Sciences, vol. 483, pp. 174-191, 2019, https://doi.org/10.1016/j.ins.2019.01.025 (cited 36 times, Google Scholar)
-
T. Weiler and E. Lughofer. Approximation of Incoherent Probabilities. International Journal of Approximate Reasoning, vol. 105, pp. 342--355, 2019, https://doi.org/10.1016/j.ijar.2018.12.009
-
M. Pratama, W. Pedrycz and E. Lughofer. Online Tool Condition Monitoring Based on Parsimonious Ensemble+. IEEE Transactions on Cybernetics, to appear, vol. 50 (2), pp. 664-677, DOI: 10.1109/TCYB.2018.2871120
-
Edwin Lughofer*, Mahardhika Pratama and Igor Skrjanc, Incremental Rule Splitting in Generalized Evolving Fuzzy Systems for Autonomous Drift Compensation, IEEE Transactions on Fuzzy Systems, vol. 26(4), pp. 1854--1865, 2018, DOI: 10.1109/TFUZZ.2017.2753727 (cited 57 times, Google Scholar, "h")
-
J. Liu, E. Lughofer, X. Zeng and Z. Li. The Power of Visual Texture in Aesthetic Perception: an exploration of the predictability of perceived aesthetic emotions.
Computational Intelligence and Neuroscience, Article ID 1812980, 2018, https://doi.org/10.1155/2018/1812980
-
Jose de Jesus Rubio, Edwin Lughofer, Jesus A. Meda Campana, Luis Alberto Paramo, Juan Francisco Novoa, Jaime Pacheco, Neural network updating via argument Kalman filter for modeling of Takagi-Sugeno fuzzy models, Journal of Intelligent and Fuzzy Systems, vol. 35, no. 2, pp. 2585-2596, 2018, DOI: 10.3233/JIFS-18425 (cited 56 times, Google Scholar, "h")
-
Ramin Nikzad-Langerodi*, Werner Zellinger, Edwin Lughofer and Susanne Saminger-Platz, Domain-Invariant Partial Least Squares Regression, Analytical Chemistry, vol. 90 (11), pp. 6693-6701, 2018, DOI:10.1021/acs.analchem.8b00498
-
Ramin Nikzad-Langerodi, Edwin Lughofer*, Carlos Cernuda, Thomas Reischer, Wolfgang Kantner, Marcin Pawliczek, Markus Brandstetter, Calibration Model Maintenance in Melamine Resin Production: Integrating Drift Detection, Smart Sample Selection and Model Adaptation, Analytica Chimica Acta, vol. 1013, pp. 1—12, 2018, appeared as FEATURED ARTICLE for Front Cover Issue
https://doi.org/10.1016/j.aca.2018.02.003
-
Gabriel Kronberger*, Michael Kommenda, Edwin Lughofer, Susanne Saminger-Platz, Andreas Promberger, Falk Nickel, Stephan Winkler and Michael Affenzeller, Using Robust Generalized Fuzzy Modeling and Enhanced Symbolic Regression to Model Tribological Systems, Applied Soft Computing, vol. 69, pp. 610-624, 2018.
-
Mahardhika Pratama, Witold Pedrycz and Edwin Lughofer, Evolving Ensemble Fuzzy Classifier, IEEE Transactions on Fuzzy Systems, vol. 26 (5), pp. 2552-2567, 2018, DOI: 10.1109/TFUZZ.2018.2796099 (cited 53 times, Google Scholar, "h")
-
Edwin Lughofer*, Alexandru-Ciprian Zavoianu, Robert Pollak, Mahardhika Pratama, Pauline Meyer-Heye, Helmut Zörrer, Christian Eitzinger, Julia Haim and Thomas Radauer, Self-Adaptive Evolving Forecast Models with Incremental PLS Space Updating for On-line Prediction of Micro-fluidic Chip Quality, Engineering Applications of Artificial Intelligence, vol. 68, pp.131-151, 2018, https://doi.org/10.1016/j.engappai.2017.11.001
-
Edwin Lughofer*, Mahardhika Pratama, On-line Active Learning in Data Stream Regression using Uncertainty Sampling based on Evolving Generalized Fuzzy Models, IEEE Transactions on Fuzzy Systems, vol. 26 (1), pp. 292--309, 2018, DOI: 10.1109/TFUZZ.2017.2654504 (cited 64 times, Google Scholar, "h")
-
Mahardhika Pratama*, Edwin Lughofer, Plamen Angelov and Meng Joo Er.
Parsimonious Random Vector Functional Link Network for Data Streams.
Information Sciences, vol. 430-431, pp. 519-537, 2018, https://doi.org/10.1016/j.ins.2017.11.050
-
Jianli Liu*, Edwin Lughofer and Xianyi Zeng, Toward Model Building for Visual Aesthetic Perception - SURVEY/POSITION Paper, Computational Intelligence and Neuroscience, Article ID 1292801, 13 pages, 2018, https://doi.org/10.1155/2017/1292801
-
Jose de Jesus Rubio*, Edwin Lughofer, Plamen Angelov, Juan Francisco Novoa and Jesus A. Meda-Campana, A Novel Algorithm for the Modeling of Complex Processes, Kybernetika, vol. 54 (1), pp. 79-95, 2018, DOI: 10.14736/kyb-2018-1-0079
-
Edwin Lughofer*, Roland Richter, Ulrich Neissl, Wolfgang Heidl, Christian Eitzinger, Thomas Radauer, Explaining Classifier Decisions Linguistically for Stimulating and Improving Operators Labeling Behavior, Information Sciences, vol. 420, pp. 16-36, 2017, http://www.sciencedirect.com/science/article/pii/S0020025517308678
-
Edwin Lughofer*, On-line Active Learning: A New Paradigm to Improve Practical Useability of Data Stream Modeling Methods - SURVEY/POSITION Paper, Information Sciences, vol. 415-416, pp. 356-376, 2017, https://doi.org/10.1016/j.ins.2017.06.038 (cited 42 times, Google Scholar)
-
Mahardhika Pratama, Eric Dimla, Chow Yin Lai, Edwin Lughofer*, Meng Joo Er, Metacognitive Learning Approach for Online Tool Condition Monitoring, Journal of Intelligent Manufacturing, vol. 30 (4), 2019, pp. 1717-1737, https://doi.org/10.1007/s10845-017-1348-9
-
Ramin Nikzad-Langerodi, Edwin Lughofer*, Susanne Saminger-Platz, Thomas Zahel, Patrick Sagmeister, Christoph Herwig, Automatic Feed Phase Identification in Multivariate Process Profiles by Sequential Binary Classification, Analytica Chimica Acta, vol. 982, pp. 48-61, 2017, https://doi.org/10.1016/j.aca.2017.05.03
-
Francisco Serdio, Edwin Lughofer*, Ciprian Zavoianu, Kurt Pichler, Markus Pichler, Thomas Buchegger, Hajrudin Efendic, Improved Fault Detection employing Hybrid Memetic Fuzzy Modeling and Adaptive Filters, Applied Soft Computing, vol. 51, pp. 60-82, 2017, http://dx.doi.org/10.1016/j.asoc.2016.11.038
(cited 37 times, Google Scholar)
-
Choiru Zain*, Mahardhika Pratama, Edwin Lughofer, Sreenatha Anavatti, Evolving Type-2 Web News Mining, Applied Soft Computing, vol. 54, pp. 200-220, 2017, http://dx.doi.org/10.1016/j.asoc.2016.11.034 (cited 44 times, Google Scholar)
(cited 38 times, Google Scholar)
-
Edwin Lughofer*, Stefan Kindermann, Mahardhika Pratama and Jose de Jesus Rubio. Top-Down Sparse Fuzzy Regression Modeling from Data with Improved Coverage, International Journal of Fuzzy Systems, vol. 19 (5), pp. 1645--1658, 2017, doi:10.1007/s40815-016-0271-0
-
Mahardhika Pratama*, Edwin Lughofer, Meng Joo Er and Chee-Peng Lim, Data Driven Modeling based on Recurrent Interval-Valued Metacognitive Scaffolding Fuzzy Neural Network, Neurocomputing, vol. 262, pp. 4-27, https://doi.org/10.1016/j.neucom.2016.10.093, 2017
-
Mahardhika Pratama*, Jie Lu, Edwin Lughofer, Guang Zhang and Meng Joo Er, Incremental Learning of Concept Drift Using Evolving Type-2 Recurrent Fuzzy Neural Network, IEEE Transactions on Fuzzy Systems, vol. 25 (5), pp. 1175--1192, 2017, 10.1109/TFUZZ.2016.2599855 (cited 106 times, Google Scholar, "h")
-
Mahardhika Pratama, Edwin Lughofer, Chee Peng Lim, Wenny Rahayu, Taram Dillon and Agus Budiyono, pClass+: A novel Evolving Semi-supervised Classifier, International Journal of Fuzzy Systems, vol. 19 (3), pp. 863--880, 2017, DOI: 10.1007/s40815-016-0236-3 (cited 34 times, Google Scholar)
-
José de Jesús Rubio*, L. Zhang, E. Lughofer, P. Cruz, A. Alsaedi, T. Hayat. Modeling and control with neural networks for a magnetic levitation system. Neurocomputing, vol. 227, pp. 113-121, 2016, http://dx.doi.org/10.1016/j.neucom.2016.09.101 (cited 48 times, Google Scholar, "h")
-
Carlos Cernuda, Edwin Lughofer*, Helmut Klein, Clemens Forster, Marcin Pawliczek and Markus Brandstetter, Improved Quantification of Important Beer Quality Parameters based on Non-linear Calibration Methods applied to FT-MIR Spectra, Analytical and Bioanalytical Chemistry (special issue on "Process Analytics" organized by Rudolf Kessler), vol. 409 (3), pp. 841-857, 2016, 10.1007/s00216-016-9785-4
-
Gerd Bramerdorfer*, Alexandru-Ciprian Zavoianu, Siegfried Silber, Edwin Lughofer, Wolfgang Amrhein, Possibilities for Speeding-Up the FE-Based Optimization of Electrical Machines - A Case Study, IEEE Transactions on Industrial Applications, vol. 52 (6), pp. 4668-4677, 2016, 10.1109/TIA.2016.2587702
-
Edwin Lughofer*, Eva Weigl, Wolfgang Heidl, Christian Eitzinger and Thomas Radauer, Recognizing Input Space and Target Concept Drifts in Data Streams with Scarcely Labelled and Unlabelled Instances, Information Sciences, vol. 355-356, pp. 127-151, 2016, doi:10.1016/j.ins.2016.03.034 (cited 37 times, Google Scholar)
-
Mahardhika Pratama* and Jie Lu and E. Lughofer and G. Zhang and Sreenatha Anavatti, Scaffolding Type-2 Classifier for Incremental Learning under Concept Drifts, NeuroComputing, vol. 191, pp. 304-329, 2016, doi:10.1016/j.neucom.2016.01.049 (cited 81 times, Google Scholar, "h")
-
Eva Weigl*, Wolfgang Heidl, Edwin Lughofer, Christian Eitzinger and Thomas Radauer, On Improving Performance of Surface Inspection Systems by On-line Active Learning and Flexible Classifier Updates, Machine Vision and Applications, vol. 27 (1), pp. 103-127, 2016, doi: 10.1007/s00138-015-0731-9
-
Edwin Lughofer*, Carlos Cernuda, Stefan Kindermann and Mahardhika Pratama, Generalized Smart Evolving Fuzzy Systems, Evolving Systems, vol. 6 (4), pp. 269-292, 2015, doi: 10.1007/s12530-015-9132-6 (cited 137, Google Scholar, "h").
-
Edwin Lughofer* and Moamar Sayed-Mouchaweh, Autonomous Data Stream Clustering Implementing Split-and-Merge Techniques - Towards a Plug-and-Play Approach, Information Sciences, vol. 204, pp. 54--79, 2015 (cited 99, "h", Google Scholar).
-
Edwin Lughofer*, Eva Weigl, Wolfgang Heidl, Christian Eitzinger, Thomas Radauer, Integrating new Classes On the Fly in Evolving Fuzzy Classifier Designs and Its Application in Visual Inspection, Applied Soft Computing, vol. 35, pp. 558-582, 2015, doi:10.1016/j.asoc.2015.06.038 (cited 37 times, Google Scholar)
-
Jianli Liu*, Edwin Lughofer and Xianyi Zeng, Aesthetic Perception of Visual Textures: A Holistic Exploration using Texture Analysis, Psychological Experiment and Perception Modeling, Frontiers of Computational Neuroscience, vol. 9:134, pp. 1--14, 2015, http://dx.doi.org/10.3389/fncom.2015.00134
-
Carlos Cernuda, Edwin Lughofer*, Thomas Röder, Wolfgang Märzinger, Thomas Reischer, Marcin Pawliczek and Markus Brandstätter, Self-Adaptive Non-Linear Methods for Improved Multivariate Calibration in Chemical Processes, Lenzinger Berichte, vol. 92, pp. 12--32, 2015
-
Kurt Pichler*, Edwin Lughofer, Markus Pichler, Thomas Buchegger, Erich Peter Klement and Matthias Huschenbett, Fault detection in reciprocating compressor valves under varying load conditions, Mechanical Systems and Signal Processing, vol. 70-71, pp. 104-119, 2016, doi:10.1016/j.ymssp.2015.09.005
(cited 66, Google Scholar, "h").
-
Mahardhika Pratama*, Sreenatha Anavatti, Edwin Lughofer, C.P. Lim, An Incremental Meta-cognitive-based Scaffolding Fuzzy Neural Network, NeuroComputing, vol. 171, pp. 89-105, 2016, doi:10.1016/j.neucom.2015.06.022 (cited 90, Google Scholar, "h").
-
Alexandru-Ciprian Zavoianu*, Edwin Lughofer, Werner Koppelstaetter, Günther Weidenholzer, Wolfgang Amrhein, Erich Peter Klement, Performance Comparison of Generational and Steady-State Asynchronous Multi-Objective Evolutionary Algorithms for Computationally-Intensive Problems, Knowledge-Based Systems, vol. 87, pp. 47-60, 2015, doi:10.1016/j.knosys.2015.05.029
-
Jianli Liu*, Edwin Lughofer, Xianyi Zeng, Could Linear Model Bridge the Gap between Low-level Statistical Features and Aesthetic Emotions of Visual Textures?, NeuroComputing, vol. 168 (30), pp. 947-960, 2015, doi:10.1016/j.neucom.2015.05.030
-
Francisco Serdio, Edwin Lughofer*, Kurt Pichler, Markus Pichler, Thomas Buchegger and Hajrudin Efendic, Fuzzy Fault Isolation using Gradient Information and Quality Criteria from System Identification Models, Information Sciences, vol. 316, pp. 18-39, 2015, doi:10.1016/j.ins.2015.04.008
-
Moamar Sayed-Mouchaweh* and Edwin Lughofer, Decentralized Fault Diagnosis Approach without a Global Model for Fault Diagnosis of Discrete Event Systems, International Journal of Control, vol. 88 (11), pp. 2228-2241, 2015, doi: 10.1080/00207179.2015.1039594
-
Mahardhika Pratama*, Sreenatha.G.Anavatti, Meng Joo Er and Edwin Lughofer, pClass: An Effective Classifier for Streaming Examples, IEEE Transactions on Fuzzy Systems, vol. 23 (2), pp. 369-386, 2015, (cited 104, Google Scholar, "h").
doi: 10.1109/TFUZZ.2014.2312983
-
Kurt Pichler*, Edwin Lughofer, Markus Pichler, Thomas Buchegger, Erich Peter Klement and Mathias Huschenbett, Detecting cracks in reciprocating compressor valves using pattern recognition in the pV diagram, Pattern Analysis and Applications, vol. 18 (2), pp. 461-472, 2015, doi: 10.1007/s10044-014-0431-5
-
Carlos Cernuda, Edwin Lughofer*, Georg Mayr. Thomas Röder and Peter Hintenaus and Wolfgang Märzinger and Jürgen Kasberger. Incremental and Decremental Active Learning for Optimized Self-Adaptive Calibration in Viscose Production, Chemometrics and Intelligent Laboratory Systems, vol. 138, pp. 14-29, 2014, DOI: 10.1016/j.chemolab.2014.07.008
-
Ammar Shaker and Edwin Lughofer*. Self-Adaptive and Local Strategies for a Smooth Treatment of Drifts in Data Streams, Evolving Systems, vol. 5 (4), pp. 239-257, 2014, doi: 10.1007/s12530-014-9108-y (cited 59, Google Scholar, "h").
-
Francisco Serdio, Edwin Lughofer*, Kurt Pichler, Thomas Buchegger, Markus Pichler and Hajrudin Efendic. Fault Detection in Multi-Sensor Networks based on Multivariate Time-Series Models and Orthogonal Transformations. Information Fusion, vol. 20, pp. 272-291, 2014, http://dx.doi.org/10.1016/j.inffus.2014.03.006 (cited 90 times, Google Scholar, "h")
-
Alexandru-Ciprian Zavoianu*, Edwin Lughofer, Gerd Bramerdorfer, Wolfgang Amrhein, Erich Peter Klement, DECMO2 - A Robust Hybrid and Adaptive Multi-Objective Evolutionary Algorithm, Soft Computing, vol. 19 (12), pp. 3551-3569, 2015, doi: 10.1007/s00500-014-1308-7 (cited 53, Google Scholar, "h").
-
Carlos Cernuda*, Edwin Lughofer, Peter Hintenaus and Wolfgang Märzinger, Enhanced Genetic Operators Design for Waveband Selection in Multivariate Calibration by NIR Spectroscopy, Journal of Chemometrics, vol. 28 (3), pp. 123-136, 2014, DOI: 10.1002/cem.2583
-
Edwin Lughofer, On-line Assurance of Interpretability Criteria in Evolving Fuzzy Systems --- Achievements, New Concepts and Open Issues, Information Sciences, vol. 251, pp. 22-46, 2013, http://dx.doi.org/10.1016/j.ins.2013.07.002
(cited 114 times, Google Scholar, "h")
-
Mahardhika Pratama*, Sreenatha.G.Anavatti, Plamen Angelov and Edwin Lughofer, PANFIS: A Novel Incremental Learning Machine, IEEE Transactions on Neural Networks and Learning Systems, vol. 25 (1), pp. 55-68, 2014, doi: 10.1109/TNNLS.2013.2271933 (cited 216 times, Google Scholar, "h")
-
Francisco Serdio, Edwin Lughofer*, Kurt Pichler, Thomas Buchegger and Hajrudin Efendic, Residual-Based Fault Detection using Soft Computing Techniques for Condition Monitoring at Rolling Mills, Information Sciences, vol. 259, pp. 304-320, 2014, doi: dx.doi.org/10.1016/j.ins.2013.06.045 (cited 89 times, Google Scholar, "h")
-
Alexandru-Ciprian Zavoianu, Gerd Bramerdorfer, Edwin Lughofer*, Siegfried Silber, Wolfgang Amrhein, Erich Peter Klement, Hybridization of Multi-Objective Evolutionary Algorithms and Artificial Neural Networks for Optimizing the Performance of Electrical Drives, Engineering Applications of Artificial Intelligence, vol. 26 (8), pp. 1781-1794, 2013, http://dx.doi.org/10.1016/j.engappai.2013.06.002 (cited 77 times, Google Scholar, "h")
-
Mahardhika Pratama*, Sreenatha.G.Anavatti and Edwin Lughofer, GENEFIS: Towards an Effective Localist Network, IEEE Transactions on Fuzzy Systems, vol. 22 (3), pp. 547-562, 2014, doi: 10.1109/TFUZZ.2013.2264938 (cited 141 times, Google Scholar, "h")
-
Carlos Cernuda, Edwin Lughofer*, Peter Hintenaus, Wolfgang Märzinger, Thomas Reischer, Marcin Pawlicek and Juergen Kasberger, Hybrid Adaptive Calibration Methods and Ensemble Strategy for Prediction of Cloud Point in Melamine Resin Production, Chemometrics and Intelligent Laboratory Systems, vol. 126, pp. 60-75, 2013, http://dx.doi.org/10.1016/j.chemolab.2013.05.001
-
Edwin Lughofer* and Oliver Buchtala, Reliable All-Pairs Evolving Fuzzy Classifiers, IEEE Transactions on Fuzzy Systems, vol. 21 (4), pp. 625-641, 2013.
doi: http://dx.doi.org/10.1109/TFUZZ.2012.2226892 (cited 81 times, Google Scholar, "h")
-
Wolfgang Heidl*, Stefan Thumfart, Edwin Lughofer, Christian Eitzinger and Erich Peter Klement, Machine Learning Based Analysis of Gender Differences in Visual Inspection Decision Making, Information Sciences, vol. 224, pp. 62-76, 2013, doi: http://dx.doi.org/10.1016/j.ins.2012.09.054.
-
Mahardhika Pratama, M.J. Er, X. Li, Richard J. Oentaryo, Edwin Lughofer and Imam Arifin, Data Driven Modeling Based on Dynamic Parsimonious Fuzzy Neural Network, NeuroComputing, vol. 110, pp. 18-28, 2013, http://dx.doi.org/10.1016/j.neucom.2012.11.013 (cited 66, Google Scholar, "h").
-
Edwin Lughofer, Single-Pass Active Learning with Conflict and Ignorance, Evolving Systems, vol. 3 (4), pp. 251-271, 2012, doi: 10.1007/s12530-012-9060-7 (cited 107 times, Google Scholar, "h")
-
Carlos Cernuda, Edwin Lughofer*, Lisbeth Suppan, Thomas Röder, Roman Schmuck, Peter Hintenaus, Wolfgang Märzinger, Jürgen Kasberger, Evolving Chemometric Models for Predicting Dynamic Process Parameters in Viscose Production, Analytica Chimica Acta, vol. 725, pp. 22-38, 2012,
http://dx.doi.org/10.1016/j.aca.2012.03.012
-
Edwin Lughofer, A Dynamic Split-and-Merge Approach for Evolving Cluster Models, Evolving Systems (special issue on 'Dynamic Clustering'), vol. 3 (3), pp. 135-151, 2012, DOI: 10.1007/s12530-012-9046-5 (cited 75 times, Google Scholar, "h")
-
Edwin Lughofer, Hybrid Active Learning (HAL) for Reducing the Annotation Effort of Operators in Classification Systems, Pattern Recognition, vol. 45 (2), pp. 884-896, 2012, DOI: 10.1016/j.patcog.2011.08.009 (cited 90 times, Google Scholar, "h")
-
Carlos Cernuda, Edwin Lughofer*, Wolfgang Maerzinger and Juergen Kasberger, NIR-based Quantification of Process Parameters in Polyetheracrylat (PEA) Production using Flexible Non-linear Fuzzy Systems, Chemometrics and Intelligent Laboratory Systems, vol. 109 (1), pp. 22-33, 2011,
DOI: 10.1016/j.chemolab.2011.07.004 (cited 32, Google Scholar).
-
Edwin Lughofer*, Bogdan Trawinski, Krzysztof Trawinski, Olgierd Kempa, Tadeusz Lasota, On Employing Fuzzy Modeling Algorithms for the Valuation of Residential Premises, Information Sciences, vol. 181 (23), pp. 5123--5142, 2011,
DOI: 10.1016/j.ins.2011.07.012, (cited 58 times, Google Scholar, "h")
-
Edwin Lughofer*, Jean-Luc Bouchot and Ammar Shaker. On-line Elimination of Local Redundancies in Evolving Fuzzy Systems. Evolving Systems, vol. 2 (3), pp. 165--187, 2011, DOI: 10.1007/s12530-011-9032-3. (cited 100 times, Google Scholar, "h")
-
Edwin Lughofer*, Vicente Macian, Carlos Guardiola and Erich Peter Klement, Identifying Static and Dynamic Prediction Models for NOx Emissions with Evolving Fuzzy Systems, Applied Soft Computing, vol. 11(2), pp. 2487-2500, 2011, doi:10.1016/j.asoc.2010.10.004 (cited 59 times, Google Scholar, "h")
-
Edwin Lughofer, On-line Incremental Feature Weighting in Evolving Fuzzy Classifiers, Fuzzy Sets and Systems, vol 163 (1), pp. 1-23, 2011, doi:10.1016/j.fss.2010.08.012 (cited 74 times, Google Scholar, "h")
-
Edwin Lughofer* and Plamen Angelov, Handling Drifts and Shifts in On-Line Data Streams with Evolving Fuzzy Systems, Applied Soft Computing, vol. 11(2), pp. 2057-2068, 2011, doi:10.1016/j.asoc.2010.07.003 (cited 166 times, Google Scholar, "h")
-
Edwin Lughofer*, Stefan Kindermann, SparseFIS: Data-Driven Learning of Fuzzy Systems with Sparsity Contraints, IEEE Transactions on Fuzzy Systems, vol. 18 (2), pp. 396-411, 2010, doi:10.1109/TFUZZ.2010.2042960 (cited 87 times, Google Scholar, "h")
-
Werner Groissboeck, Edwin Lughofer*, Stefan Thumfart, Associating Visual Textures with Human Perceptions Using Genetic Algorithms, Information Sciences, vol. 180 (11), pp. 2065-2084, 2010, doi:10.1016/j.ins.2010.01.035 (cited 40 times, Google Scholar, "h")
-
Stefan Thumfart*, Richard Jacobs, Edwin Lughofer, Christian Eitzinger, Frans Cornelissen, Werner Groissboeck, Roland Richter, Modelling Human Aesthetic Perception of Visual Textures, ACM Transactions on Applied Perception, vol. 8 (4), 2011, DOI: 10.1145/2043603.2043609
-
Edwin Lughofer, On-line Evolving Image Classifiers and Their Application to Surface Inspection, Image and Vision Computing (special issue of on-line pattern recognition and machine learning techniques for computer vision), Vol. 28 (7), pp. 1065-1079, 2010, DOI: 10.1016/j.imavis.2009.07.002 (cited 40 times, Google Scholar, "h")
-
Edwin Lughofer*, James E. Smith, Muhammad A. Tahir, Praminda Caleb-Solly, Christian Eitzinger, Davy Sannen and Marnix Nuttin, Human-Machine Interaction Issues in Quality Control Based on On-Line Image Classification, IEEE Transactions on Systems, Man and Cybernetics, part A: Systems and Humans, 2009, vol. 39 (5), pp. 960-971, DOI: 10.1109/TSMCA.2009.2025025 (cited 50 times, Google Scholar, "h")
-
Davy Sannen, Edwin Lughofer* and Hendrik van Brussel, Towards Incremental Classifier Fusion, Intelligent Data Analysis, Vol. 14 (1), pp. 3-30, 2010, DOI 10.3233/IDA-2009-0406
-
Christian Eitzinger*, Wolfgang Heidl, Edwin Lughofer, Stefan Raiser, James E. Smith, Muhammad A. Tahir, Davy Sannen and Hendrik van Brussel, Assessment of the Influence of Adaptive Components in Trainable Surface Inspection Systems, Machine Vision and Applications, Vol. 21 (5), pp. 613-626, 2010, DOI 10.1007/s00138-009-0211-1 (cited 42 times, Google Scholar, "h")
-
Stefan Raiser, Edwin Lughofer*, Christian Eitzinger and James E. Smith, Impact of Object Extraction Methods on Classification Performance in Surface Inspection Systems,Machine Vision and Applications, vol. 21(5), pp. 627-641, 2010, DOI: 10.1007/s00138-009-0205-z
-
Plamen Angelov, Edwin Lughofer*, Xiaowei Zhou. Evolving Fuzzy Classifiers using Different Model Architectures, Fuzzy Sets and Systems, vol.159 (23), pp. 3160-3182, 2008, doi:10.1016/j.fss.2008.06.019 (cited 202 times, Google Scholar, "h")
-
Edwin Lughofer. FLEXFIS: A Robust Incremental Learning Approach for Evolving TS Fuzzy Models, IEEE Transactions on Fuzzy Systems, vol. 16 (6), pp. 1393-1410, 2008, doi 10.1109/TFUZZ.2008.925908 (cited 329 times, Google Scholar, "h")
-
Edwin Lughofer. Extensions of Vector Quantization for Incremental Clustering. Pattern Recognition, vol. 41(3), pp. 995-1011, 2008, doi:10.1016/j.patcog.2007.07.019 (cited 173 times, Google Scholar, "h")
-
Edwin Lughofer* and Carlos Guardiola. On-Line Fault Detection with Data-Driven Evolving Fuzzy Models. Control and Intelligent Systems, Vol. 36 (4), pp. 307-317, 2008 (cited 37 times, Google Scholar)
-
Plamen Angelov* and Edwin Lughofer* , Data-Driven Evolving Fuzzy Systems using eTS and FLEXFIS: Comparative Analysis. International Journal of General Systems, vol. 37(01), pp. 45 - 67, 2008
- Plamen Angelov, Veniero Giglio, Carlos Guardiola, Edwin Lughofer*, and Jose Manuel Lujan. An approach to model-based fault detection in industrial measurement systems with application to engine test benches. Measurement Science and Technology, Vol. 17, pp.1809-1818, 2006 (cited 55 times, Google Scholar, "