Unit 4

The Extension Principle

Images and Preimages of Functions

Let $f: X \rightarrow Y$ be a function and A be a subset of X. Then the image of A w.r.t. f is defined as follows:

$$
f(A)=\{y \in Y \mid \text { there is an } x \in A \text { such that } y=f(x)\}
$$

Let B be a subset of Y. Then the preimage of Y w.r.t. f is defined as
$f^{-1}(B)=\{x \in X \mid$ there is a $y \in B$ such that $y=f(x)\}$.
Question: How can we generalize this to fuzzy sets?

The Extension Principle

For a given function $f: X \rightarrow Y$, we define a fuzzy relation R as

$$
\mu_{R}(x, y)= \begin{cases}1 & \text { if } y=f(x) \\ 0 & \text { otherwise }\end{cases}
$$

Let A be a fuzzy set on X and B be a fuzzy set on Y. Then we can compute $\hat{f}(A)$ and $\hat{f}^{-1}(B)$ as $R_{T}(A)$ and $R_{T}^{-1}(B)$, respectively, which simplify to

$$
\mu_{\tilde{f}(A)}(y)=\sup \left\{\mu_{A}(x) \mid y=f(x)\right\},
$$

Fuzzy Logic I

$$
\mu_{\hat{f}^{-1}(B)}(x)=\sup \left\{\mu_{B}(y) \mid y=f(x)\right\} .
$$

Representation by Means of α-Cuts

For $\alpha \in[0,1[$, the strict α-cut of a fuzzy set A on X is a crisp set defined as

$$
A^{>\alpha}=\left\{x \in X \mid \mu_{A}(x)>\alpha\right\} .
$$

For a given function $f: X \rightarrow Y$, the following holds for all $\alpha \in[0,1[$:

$$
\hat{f}(A)^{>\alpha}=f\left(A^{>\alpha}\right)
$$

Example

$X=\{a, b, c, d, e\}, Y=\{r, s, t, u\}$

x	$\mu_{A}(x)$
a	0.6
b	0.4
c	0.1
d	0.0
e	0.3

x	$f(x)$
a	r
b	s
c	r
d	t
e	s

y	$\mu_{B}(y)$
r	0.0
s	0.3
t	0.7
u	0.1

Extension Principle for Cartesian Products

Suppose we are given a function $f: X_{1} \times \cdots \times X_{n} \rightarrow Y$, and fuzzy sets A_{i} on the respective X_{i} (for $i=1, \ldots, n$). How can we define $\hat{f}\left(A_{1}, \ldots, A_{n}\right)$?
Given a t-norm T, the n-ary T-extension of f, denoted \hat{f}_{T} is defined as

$$
\begin{gathered}
\mu_{\hat{f}_{T}\left(A_{1}, \ldots, A_{n}\right)}(y)=\sup \left\{T\left(\mu_{A_{1}}\left(x_{1}\right), \ldots, \mu_{A_{n}}\left(x_{n}\right)\right) \mid x_{i} \in X_{i}\right. \text { and } \\
\left.y=f\left(x_{1}, \ldots, x_{n}\right)\right\} .
\end{gathered}
$$

Representation by Means of α-Cuts

The following holds for all $\alpha \in[0,1[$:

$$
\widehat{f}_{T_{\mathbf{M}}}\left(A_{1}, \ldots, A_{n}\right)^{>\alpha}=f\left(A_{1}^{>\alpha}, \ldots, A_{n}^{>\alpha}\right)
$$

Note that this does not hold for $T \neq T_{\mathbf{M}}$!

Fuzzy Arithmetics

Let A_{1} and A_{2} be two fuzzy sets on the real numbers \mathbb{R}.

- The T-extension of the addition $f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$ is called T-addition (T-sum). We use the special notation

$$
A_{1} \oplus_{T} A_{2}=\hat{f}_{T}\left(A_{1}, A_{2}\right) .
$$

- The T-extension of the multiplication $f^{\prime}\left(x_{1}, x_{2}\right)=x_{1}$. x_{2} is called T-multiplication (T-product). We use the special notation

$$
A_{1} \otimes_{T} A_{2}=\hat{f}_{T}^{\prime}\left(A_{1}, A_{2}\right)
$$

Example: Addition of Fuzzy Sets

Fuzzy Numbers

A fuzzy set A on the real numbers \mathbb{R} is called a fuzzy number if it has the following properties:

Normality: there is an $x \in \mathbb{R}$ such that $\mu_{A}(x)=1$
Convexity: every strict α-cut is an interval
Boundedness: all strict α-cuts are bounded

Some Remarks

- If x_{0} is a value where $\mu_{A}\left(x_{0}\right)=1$ for a fuzzy number A, then the membership function μ_{A} is non-decreasing to the left of x_{0} and non-increasing to the right of x_{0}
- A fuzzy set A on \mathbb{R} is convex if and only if the following holds for all chains $x \leq y \leq z$:

$$
\mu_{A}(y) \geq \min \left(\mu_{A}(x), \mu_{A}(z)\right)
$$

- Some authors call our notion of a fuzzy number a fuzzy interval and use the term "fuzzy number" under additional, more restrictive assumptions

Trapezoidal Fuzzy Numbers

A chain of real numbers $a<b \leq c<d$ defines a trapezoidal fuzzy number A in the following way:

$$
\mu_{A}(x)= \begin{cases}0 & \text { if } x<a \\ \frac{x-a}{b-a} & \text { if } a \leq x<b \\ 1 & \text { if } b \leq x \leq c \\ \frac{d-x}{d-c} & \text { if } c<x \leq d \\ 0 & \text { if } d<x\end{cases}
$$

Triangular Fuzzy Numbers

A chain of real numbers $a<b<c$ defines a triangular fuzzy number A in the following way:

$$
\mu_{A}(x)=\max \left(\min \left(\frac{x-a}{b-a}, \frac{c-x}{c-b}\right), 0\right)
$$

Note that triangular fuzzy numbers are nothing else but trapezoidal fuzzy numbers for which $b=c$ holds.

Adding Trapezoidal Fuzzy Numbers

Assume that we have two trapezoidal fuzzy numbers A_{1} and A_{2} derived from two chains $a_{1}<b_{1} \leq c_{1}<d_{1}$ and $a_{2}<b_{2} \leq c_{2}<d_{2}$, respectively.
Then the $T_{\mathbf{M}}$-sum of A_{1} and A_{2} is a trapezoidal fuzzy number derived from the chain

$$
a_{1}+a_{2}<b_{1}+b_{2} \leq c_{1}+c_{2}<d_{1}+d_{2} .
$$

Adding Triangular Fuzzy Numbers

Assume that we have two triangular fuzzy numbers A_{1} and A_{2} derived from two chains $a_{1}<b_{1}<c_{1}$ and $a_{2}<$ $b_{2}<c_{2}$, respectively.
Then the $T_{\mathbf{M}}$-sum of A_{1} and A_{2} is a triangular fuzzy number derived from the chain

$$
a_{1}+a_{2}<b_{1}+b_{2}<c_{1}+c_{2} .
$$

Final Remarks

- The last two assertions only hold for the $T_{\mathbf{M}}$-extension, not for any other t-norms.
- The Yager family is the only class of t-norms that preserves the trapezoidal/triangular shape. In case $T \neq T_{\mathbf{M}}$, however, the formulas are more complicated.
- Other t-norms do not even preserve the piecewise linear shape.
- Multiplication of fuzzy numbers does not preserve the piecewise linear shape, no matter which t-norm we

