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Copula-Based Universal Integrals

Radko Mesiar

Slovak University of Technology
Faculty of Civil Engineering

Bratislava, Slovakia
UTIA CAS, Pod vodárenskou věžı́ 4

182 08 Praha, Czech Republic
radko.mesiar@stuba.sk

This work was done in collaboration with E.P. Klement, JKU Linz, F. Spizzichino,
University of Roma La Sapienza, and A. Stupňanová, STU Bratislava. As its main re-
sult, a hierarchical family of copula-based integrals is introduced and discussed. When
considering the product copula, a graded family of decomposition integrals indepen-
dently introduced by Even and Lehrer, and by Mesiar and Stupňanová, is recovered.
Boundary members are distinguished universal integrals introduced by Klement at al.
in 2010.
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Abstract

Decomposition-based multi-objective evolutionary algorithms like MOEA/D [1]
propose a novel search paradigm that is not based on the Pareto-based elitism
mechanism pioneered by earlier algorithms (NSGA-II [2] and SPEA2 [3]). The main
idea of the former is to split the multi-objective optimization problem in many
single-objective optimization problems that are to be solved simultaneously. These
decomposition strategies seem to be especially sucessful with problems that have
complicated Pareto fronts [4].

In the present work we are describing several attempts to incorporate decompo-
sition strategies into a previously proposed algorithm (i.e., DECMO [5]) in order to
further improve stability and performance.

Preliminary results indicate that a carefully chosen decomposition strategy is gen-
erally able to improve the overall quality (in terms of hypervolume [6]) of the Pareto
fronts produced by DECMO on a test bench of 20 artificial test problems. This in-
crease of the hypervolume values obtained in the last generation comes at a price of
a slightly slower convergence speed. Nevertheless, the resulting algorithm remains
fairly robust and its performance is quite good even when comparing with state-of-
the-art methods like MOEA/D-DE (with the CEC 2009 parameter settings).

Key words: multi-objective optimization, decomposition strategies, evolutionary
algorithms, cooperative coevolution, differential evolution.
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Abstract

In viscose production, it is crucial to monitor some process parameters (the concentration
of several substances) as part of the spin bath in order to assure a high quality of the fi-
nal product. During on-line production, these process parameters usually show a quite
high dynamics depending on which fibre type is produced and depending on environ-
mental influences. Thus, conventional chemometric models (e.g. Principal Components
Regression, Partial Least Squares Regression or Locally Weighted Regression) as well
as new non-linear approaches recently employed in calibration (like FLEXFIS, Flexible
Fuzzy Inference Systems [1]), which are trained based on collected calibration spectra
from Fourier transform near infrared (FT-NIR) measurements and kept fixed during the
whole life-time of the on-line process, show a quite imprecise and unreliable behavior
when predicting the concentrations of new on-line data. Recently, a new concept named
eChemo , evolving chemometric models, was developed which obtained really good re-
sults on real world data [2]. It possesses the ability to self-adapt and re-calibrate based on
newly recorded on-line data, but unfortunately it requires permanent supervision, i.e. real
values measured by means of a titration automaton, which is too time intensive and too ex-
pensive from an industrial point of view. We propose here an alternative approach, based
on self-adaptive calibration models within a sliding window concept, which brings more
flexibility to the incremental learning phase and especially also in the forgetting process
of older samples. It consists in a window, containing W samples, that is updated every R
incoming new samples by means of substitution of one sample by the new one. The selec-
tion of the outgoing sample is guided by a two-stage selection process: i) check if the new
sample is significantly similar to any sample in the current window, by means of a spectral
similarity measure based on Bayesian statistics [3]. If so, we substitute the most similar
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one. ii) If not, we create W models leaving a different sample out, thus we will choose the
sample out of the best model as the less informative one. Therefore, that will be the outgo-
ing sample. This approach permits introducing more flexibility in terms of self-adjusting
learning parameters and self-optimizing input dimensionality for the self-adaptive cali-
bration models, thus allowing the integration of input structure changes, which was not
possible in eChemo. Moreover, it also gets very accurate results and requires much less
real values, leading to a huge computational time and financial saving. We show that our
approach significantly outperforms conventional S-o-A models, and eChemo, when using
real world data streams.

Keywords: Active learning, on-line modelling, cost optimization, multivariate
calibration, viscose production
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From Fault Detection of Large Amounts of
Photovoltaic Systems to Median Regression

Patrick Traxler

Software Competence Center Hagenberg, Austria

We study a model-based approach to detect sustainable faults of photovoltaic
systems. We describe models and algorithms which allow us to analyze a large
amount of photovoltaic systems. Our approach is based on median regression.
We assume that we know the irradiance and produced energy of a photovoltaic
system or that we know the energy of photovoltaic systems which are close to
each other. The particular challenge of the data analysis problem we study here
is the possible huge amount of photovoltaic systems and their continuous streams
of data.

We also discuss some abstractions and generalizations of the problem. In par-
ticular, we discuss two algorithms for median regression (a.k.a. `1-regression).
These two problems correspond to geometric problems, namely hyperplane fit-
ting. Our first algorithm solves the problem of minimizing least absolute devia-
tions in the plane such that the fitting line goes through the origin. Our second
algorithm solves the same problem in three dimensions. In this case, we want a
fitting plane which goes through the origin minimizing least absolute deviations.
We provide experimental results, in particular, a comparison with simplex-based
algorithms, showing that our algorithms outperform existing approaches. We also
present some first mathematical results.





Fault Detection in Multi-Sensor Networks

Francisco Serdioa, Edwin Lughofera

aDepartment of Knowledge-Based Mathematical Systems, Johannes Kepler University Linz,
Austria

Abstract

This research is focused in to test a set of different models with fault detection
purposes in condition monitoring systems equipped with multi-sensor networks.

Because of the (different) nature of the sensors, a beforehand system identification
process searches for relations and dependencies between sensor channels measuring
the state of system variables, conceptually acting as a fusion operation. Due to
the increasing demand of process supervision during the last years, multiple sensor
networks turned out to emerge in industrial settings and factories. A manual super-
vision is not affordable or in some cases simply impossible, because (especially, in
large scale systems) the number of sensors installed to collect data for monitoring
purposes are often hundreds or a few thousands. Such large scale sensor networks
get room for fusioning mechanisms, then playing an intrinsic important role in order
to assimilate data in a correct way, also providing an information retrieval source.
For a recent survey of widely used (data) fusion methods see [5].

As fusion operators we have used (i) Subset selection and (ii) Channel transfor-
mations. Subset selection leads to a combinatorial optimization problem requiring
very large computation time, so we have applied a greedy based approach in form of a
modified variant of forward selection, leaned on [2], to reduce computation time dras-
tically. Channel transformations, by means of the projection of the complete channel
space (including time lags) to a transformed orthogonal space, help to provide a com-
pact view on the whole data set because of out-weighting unnecessary directions in
the joint multi-dimensional space. Even when there are different ways in which data
can be transformed to be presented as a priori knowledge to a diagnostic system, it is
well known that Principal Component Analysis (PCA) [4] and Partial Least Squares
(PLS) [3] form a major component of statistical feature extraction methods [6]. We
have used both.

Email addresses: francisco.serdio@jku.at (Francisco Serdio), edwin.lughofer@jku.at
(Edwin Lughofer)
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Afterwards, the identified systems become suitable to be modeled. As modeling
techniques, we have explored vectorized time series models and three of its variants,
i.e. non-linear finite impulse response models (NFIR), non-linear output error models
(NOE) and non-linear Box-Jenkins models (NBJ), which are methods belonging to
the class of recurrent models [1]. The vectorized time series models identify k-step
ahead multi-dimensional prediction models including the time lags best explaining
the target. The non-linear finite impulse response models only rely in the lagged
input variables, whereas the non-linear output error models include the lags of the
own predictions and the non-linear Box-Jenkins models extend the non-linear output
error models by also including the lags of the prediction errors.

Following a previous research line, an unsupervised scheme is used where neither
annotated samples nor fault patterns/models need to be available a priori. As be-
fore, the identification of the models and the fault detection stage are solely based on
the on-line recorded data streams. Testing our approach with four real-world condi-
tion monitoring scenarios employing multi-sensor network systems demonstrate that
the Receiver Operating Characteristic (ROC) curves are improved in comparison
with those ones achieved with models without lags and without transformations (i.e.
native static models) by about 20% to 30%.
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Parallelization of Algorithms for Linear Discrete
Optimization using ParaPhrase

author Michael Roßbory and Werner Reisner
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Abstract — In industry optimization of processes, production planing, or resource usage is im-
portant to reduce costs and increase profit. Mathematical models for optimization can contribute
to achieve this, but they also pose some challenges. Not only expertise in mathematics is nee-
ded to apply these optimization models, but furthermore expertise in programming is needed for
implementation and integration into the software landscape of the company. Additionally most
optimization algorithms are computationally very expensive and finding a solution takes a long ti-
me. Parallelization reduces the time and can lead to better results, but makes implementation even
more challenging. How the high-level pattern-based approach of ParaPhrase and its provided tools
reduces this challenges will be described in this paper using a real-world example from industry.
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Optimization using ParaPhrase

Michael Roßbory
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Abstract—In industry optimization of processes, production
planing, or resource usage is important to reduce costs and
increase profit. Mathematical models for optimization can con-
tribute to achieve this, but they also pose some challenges. Not
only expertise in mathematics is needed to apply these optimiza-
tion models, but furthermore expertise in programming is needed
for implementation and integration into the software landscape
of the company. Additionally most optimization algorithms are
computationally very expensive and finding a solution takes a
long time. Parallelization reduces the time and can lead to better
results, but makes implementation even more challenging. How
the high-level pattern-based approach of ParaPhrase [5] and its
provided tools reduces this challenges will be described in this
paper using a real-world example from industry.

I. INTRODUCTION

Maximize profit! This is of the main goals of many
companies. Optimization based on mathematical models can
contribute to this in many ways, e.g. process optimization,
optimization of production planing and control, or optimized
usage of resources. Optimization in the mathematical sense
means finding the minimum or maximum, respectively, of an
objective value function that is defined for a certain area, where
optimization is required. An example would be minimizing
waste when cutting sheets of various dimensions out of big
paper coils. Furthermore mathematical optimization can not
only find an optimal solution, but can assure that given
boundary conditions are fulfilled.

Many different mathematical methods exist to find the
optimum of an objective value function under a given set of
constraints, but all of them have in common that they are com-
putationally very expensive (many are known to be NP-hard).
Parallelizing these methods reduces the computation time and
can even lead to better results. Therefore parallelization is a
worthwhile goal.

Many optimization methods require heavy mathematical
fundamentals, and implementation and integration into the
companies infrastructure require a lot of knowledge and expe-
rience in programming. Parallelization makes this even more
complicated. The ParaPhrase approach [5] on parallelization
can assist in this. Its high-level pattern-based approach reduces
the complexity that low-level parallelization techniques entail
and furthermore helps to separate the implementation parts
with mathematical focus from the parts with parallelization
focus. Therefore the programmer does not need to be expert
in both areas.

The ParaPhrase provides a set of generic high-level par-
allel patterns to support the developer to implement efficient

parallel applications targeting heterogeneous architectures. The
initial patterns comprise a set of core patterns: Pipe, Farm,
Map, Reduce and a set of high level, more domain specific,
patterns: Devide and Conquer, Genetic Algorithm that can be
used isolated, but can be furthermore arbitrarily nested.

The implementation of this patterns is based on the Fast-
Flow framework developed at the University of Pisa [1].

In this paper we want to show how ParaPhrase can be
applied in discrete optimization problems by means of a real
use case directly taken from industry. This use case will be
outlined in the next section. After that the applied optimization
algorithm and its sequential implementation will be described.
The subsequent section will deal with the parallelization of
this algorithm and after that first evaluation results will be
presented.

II. USE-CASE DESCRIPTION

The use case has been taken from a project carried out
at the SCCH with a company residing in the area of metal
sheet processing. The problem that has to be solved deals with
optimization of material consumption to minimize production
costs, while certain constraints have to be fulfilled. This kind of
problem is widespread and often arises from many applications
in industry e.g. in a make-to-order steel company [4]. In
pertinent literature, this kind of problem is known as One-
dimensional Cutting-Stock Problem an optimization problem
from the area of discrete linear optimization.

Since the focus of this paper is not a detailed description
of this project and the whole the problem specification, we de-
cided to chose a similar example where the same optimization
problem has to be solved and where the same optimization
algorithm will be used as in the actual project.

The chosen example is about make-to-order reel and sheet
cutting in a paper mill. The paper mill has reels with different
diameters, widths, and sheet thicknesses and tool sets for
sheet cutting with different properties at its disposal to satisfy
production orders from customers. The orders specify the
number and dimensions of sheets of a given thickness and
the number and widths of reels with specific diameters to be
produced. The goal is to satisfy the production order while
optimizing the use of the tool set and minimizing waste. Use
case details and mathematical definitions are provided in [2].

III. OPTIMIZATION ALGORITHM

Integer linear programming (ILP) knows many different
exact algorithms (e.g. simplex algorithm, inner-point method,



Figure 1. Cutting master reels into sheets and auxiliary reels.

branch-and-bound, branch-and-cut) and heuristic methods (e.g.
hill climbing, simulated annealing) to solve optimization prob-
lems like this. [6]

The algorithm that has been implemented to solve this use
case has a few similarities to Dantzig’s Simplex Algorithm [3].
Basically this algorithm is two-phase, iterative and stepwise.
In the first phase an initial admissible solution is computed,
which is needed to start the second phase. Based on this initial
solution in every iteration of the second phase with exchange
operations it is stepwise tried to find a solution with a better
objective function value until an optimal solution is found.

Similar to that algorithm our implementation, too consists
of two phases with a first initial phase and an iterative and
stepwise second phase.

The first phase again searches for an initial admissible
solution that fulfills only one given constraints, applying an
algorithm called first fit decrease, and calculates the object
function value.

Based on this initial solution found in the first phase, the
second phase iteratively tries to find solutions with a better
objective function value until the optimum is found or another
termination criterion is reached (e.g. maximum number of
iterations). In each iteration a chain of steps is traversed, each
of these steps heuristically selected from a set of candidate
steps. Within this chain an increasing number of constraints is
enforced interleaved with optimization of the partial admissible
solutions. To pursue different optimization paths (caused by
heuristics in the optimization steps) the initial solution is
copied several times and pushed into the pool of intermediate
solutions. In each iteration an intermediate solution is picked
from the pool and passed through the optimization chain. If the
new objective function value after passing the chain is better
than a certain threshold, the intermediate solution is considered
worth for further optimization and again several copies are
pushed into the pool. Otherwise the intermediate solution is
dismissed.

IV. SEQUENTIAL IMPLEMENTATION

To solve various optimization problems a generic and
problem independent optimization framework had been devel-
oped at the SCCH. The described algorithm was the first one
that had been implemented within this framework to solve
the optimization problem stated above. The framework only
contains the algorithm specific classes that are independent
from the particular problem that has to be solved as well as
base classes on which the problem specific parts, e.g. the actual
constraints or optimization steps, base upon. Since only the
main components of the generic framework are of interest for

the parallel implementation and its evaluation, only those are
outlined in the following:

Workpiece: A Workpiece corresponds to an intermediate ad-
missible solution. It holds all information about the solu-
tion, like its properties or the already performed optimiza-
tion steps. These objects are passed through the sequence
of optimization steps for optimization. Implementations
for specific problems base upon this component.

WorkpiecePool: The WorkpiecePool holds all the WorkPieces
and synchronizes access to them.

Worker: A Worker equates to one specific optimization step
of the optimization chain. Implementations of problem
specific optimization steps again base upon this base class.

The initial implementation was sequential and uses a loop
to perform the optimization. In each loop iteration one Work-
piece is taken from the WorkpiecePool and passed through
the chain of optimization steps. In this implementation the
chain corresponds to a sequence of Workers, that has been
heuristically assembled in the initialization. At the end of each
iteration the objective function value for the current Workpiece
is calculated. Depending on the result the WorkPiece is either
dismissed if the value is worse than a certain threshold or
multiple copies are pushed back into the WorkpiecePool for a
further optimization iteration.

The framework exposes some important parameters that
have an influence on the optimization process and the quality
of the solution. Changing this parameters allows controlling the
computational workload and are therefore especially important
during the evaluation of the sequential and parallel implemen-
tation. The parameters that are important for this purpose are:

ObjectNum: After the first phase of the algorithm only one
admissible solution is available in the pool. Since the op-
timization steps include stochastic elements more copies
of the initial solution are put into the pool to be able to
pursue different optimization strategies. The number of
copies is defined by this parameter.

NetLength: This parameter defines the number of optimiza-
tion steps in the optimization chain.

Iterations: Since the number of iterations to find the optimal
solution might be very high, an upper limit can be defined
with this parameter.

V. PORTING

This section describes the approach to parallelize the
sequential implementation using the parallel patterns that are
available in ParaPhrase so far. Furthermore some extensions
and variations of this approach are outlined that may lead to
additional performance improvements.

A. Pipeline approach

Since the algorithm is stepwise and iterative, and the chain
of optimization steps, though heuristically assembled, stays
the same in every iteration, parallelization using the pipeline
pattern is most obvious. In this approach the pipeline equates
to the optimization chain where a single stage of the pipeline
corresponds to a specific optimization step. Additionally to the
optimization stages a last pipeline stage is added that performs
the calculation of the objective function value and decides



Figure 2. Current parallel implementation using an outer farm with emitter,
collector and one worker pipeline.

how the intermediate solution is further processed (dismissed
or pushed back to the pool). The outer loop that takes the
intermediate solutions from the pool and sends them through
the pipeline is the same as in the sequential implementation.

B. Farm approach

Basic concepts of the optimization framework are problem
independence and extensibility. To foster this concepts also in
parallelization the single pipeline approach has been extended.
Therefore the optimization pipeline has been nested in a farm
pattern as farm worker (Figure 2).

The components of the farm are the following:

Emitter: The emitter of the farm has access to the interme-
diate solution pool. It takes the intermediate solutions
from the pools and emits them to the worker(s). This
replaces the loop in the sequential implementation that
took the solutions from the pool and passed them through
the optimization steps. Like the replaced loop the emitter
takes the solutions from the pool until a solution is found,
the pool is empty or another termination criterion is
reached.

Worker: A worker of the farm contains a nested pipeline
that again corresponds to the chain of optimization steps.
This time only the optimization steps are included in the
pipeline without an additional collector stage.

Collector: After an intermediate solution has passed through
the pipeline the collector of the farm is responsible for the
calculation of the objective function value for this solution
and the decision how the solution is further processed.

C. Future extensions

The use of a farm as the outer pattern with nested op-
timization pipelines has various advantages compared to the
single pipeline approach, especially concerning performance
and extensibility.

• If enough cores are available on the target machine,
more farm workers containing the same pipeline can
be used which would lead to additional performance
improvements. But when using multiple pipelines, the
collector might become a bottleneck, because it has to
evaluate every intermediate solution from every pipeline.
Therefore it might be better to omit the farm collector and
add a kind of collector as the last stage to every pipeline.
But at least the intermediate solution pool is shared by
all these collectors and access has to be synchronized.
Splitting the pool into different storage regions for every
collector and only synchronizing the access of the emitter

Figure 3. Parallelization with an arbitrary number of worker pipelines with
a collector stage attached to each pipeline.

Figure 4. Parallelization with different worker pipelines and a loadbalancer
for distributing the workpieces to the correct pipeline.

might lessen the synchronization overhead and improve
the performance further. (Figure 3)

• Variations of the current algorithm might use multiple
chains of optimization steps that differ in order or selec-
tion of the steps. With an outer farm the implementation
would just require an appropriate loadbalancer imple-
mentation. The loadbalancer is used by the emitter to
decide to which worker an item has to be passed. The
default strategy in ParaPhrase is Round Robin. But other
strategies can be implemented where the decision is based
on some properties the item provides. (Figure 4)

• In the paper mill optimization problem the execution
times for the single optimization steps are almost equal.
But other problem statements might contain optimization
steps with much longer execution times compared to the
other steps. To compensate this the pipeline stages with
the long running steps just have to be replaced with nested
farms. The longer the step takes the more workers have
to be added to the nested farm.

VI. EVALUATION

Evaluation has been performed on different hardware plat-
forms ranging from rather low-performance quad-core ma-
chines to high-performance clusters. Performance gain has
been achieved on all those platforms. The following evaluation
has been performed on a 12 core machine (dual-hexacore, Intel
Xeon X5690, 3.47 GHz) with HyperThreading support, and
24GB of memory, running under Linux 64bit (Ubuntu 12.04),
to show the performance gain that can be achieved even on
quite low cost systems. The specifications of the evaluation



system is important because they seem to have a strong relation
to the results and its interpretation.

To be able to evaluate and compare the different approaches
the source code has been instrumented with additional state-
ments to measure the overall execution time of one run of the
program. The measurement is started after the configuration
files (that contain the problem specifications) have been read
and stopped after a solution has been found (For this test
case the parameters were chosen in a way that the problem
has a solution). The measurements are not constrained to the
parallelized, or sequential parts, respectively, containing the
code were the actual iterative optimization takes place. The
initialization parts, that are different between the sequential
and the parallel implementation, are also timed to include
the initialization overhead that the different approaches have.
For measuring the execution time, the timer class provided by
FastFlow has been used. The measures are in microseconds
and converted into seconds with two decimals afterwards. The
denoted values are averaged values over three runs (whereat
irreproducible outliers have been excluded).

With the results of the evaluation runs we want to analyze
the approaches according to:

• Changes of the behavior of the parallel and sequential al-
gorithm, respectively, using different value combinations
of the previously mentioned parameters NetLength and
ObjectNum. to achieve different numbers of threads and
variable computational workload.

• The differences of the sequential and parallel version,
especially regarding to the achieved speed up.

The first evaluation step was to determine the number of
instantiated threads, the workload and the number of used
CPUs, caused by the selected architecture of used paral-
lel patterns, depending on the selected parameters described
above. The observed result was that the number of threads
always equates to the value of NetLength plus three. The
value of NetLength determines the number of pipeline stages,
where each stage corresponds to one thread. The additional
three threads comprise of the main thread of the program
and the threads for emitter and collector of the used farm.
During program execution the number of fully utilized cores
was always two less than the number of threads. The reason
therefore is that the main thread is just waiting for the farm
to finish and does not use CPU time and that the emitter has
nearly no computations to perform and mostly just waits for
objects to arrive in the pool (no busy-waiting). On the whole,
this is exactly the expected behavior.

In the second step, the execution time was recorded with a
NetLength from 15 to 20. With each NetLength multiple runs
with different values (from 25 to 100 with a step size of 25)
for ObjectNum were performed. As expected the increase of
the value for ObjectNum leads to higher execution times in
the sequential as well as in the parallel version. The same is
true for increased NetLength values. Calculating the resulting
speed up achieved by parallelization showed that the higher
the value for ObjectNum was, the greater was the speed up,
ranging from about 5 to over 7 times.

The intention of the third step was to evaluate the execution
time and speed up with values for NetLength ranging from 8
to 40, but leaving the ObjectNum at a constant value of 100.
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Figure 5. Evolution of execution time of parallel optimization with increasing
number of optimization steps.
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Figure 6. Evolution of execution time of sequential optimization with
increasing number of optimization steps.
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Figure 7. Speed up of parallel implementation compared to the sequential
implementation with increasing number of optimization steps.

This range has been chosen regarding to the specifications of
the evaluation hardware platform (12 physical cores with hyper
threading). This interval leads to a range of threads, starting
with a number of threads less than the available physical
cores and ending with a number of threads much higher than
physical and logical cores (hyper threading support). This
way all important ranges and transitions of thread numbers
are included in the evaluation: Threads less than or equal to
number of physical cores [8; 12], threads within the range
of available physical and logical cores [12; 24], threads higher
than the number of all cores, and the transitions between those
ranges. The results are visualized in the charts in Figures 5, 6
and 7.



The evolution of the execution times of the sequential im-
plementation is shown in Figure 6. As expected the increase of
the execution times is linear. The reasons for the linear increase
are that in every run the number of steps in the optimization
chain was increased by 1 and all available optimization steps
need about the same time for computation. If the execution
times of the single steps would be very different (as they might
in future scenarios) and since the steps are selected randomly,
the values would still increase quite linear, but not as exact as
in this example.

More interesting are the results of the parallel implemen-
tation, shown in Figure 5. As expected the execution times
increase as the number of optimization steps do, but this
time not linearly. In the range of 8 to 12 for the NetLength
parameter the execution time is almost constant, most likely
because there are still unused physical CPUs. At the NetLength
of 13 there is jump in the measured execution time (indicated
by the green dashed line). The reason for this seem be that
there are no unused physical CPUs left and that from this
point on the logical CPUs (available due to hyper threading
support) have to be used (This might be a hint to the hyper
threading aware scheduling of the Linux kernel).

This observed developing of the speedup rate meshes with
the default pinning strategy of FastFlow, where each worker is
pinned to an unused physical CPU. More workers than CPUs
leads to more than one worker pinned to the same physical
CPU. As a consequence CPUs that have less workers and
have already finished their work can not take over work from
CPU with more workers and therefore execution time suddenly
increases.

Until a NetLength of 24 the execution time is again almost
constant, due to the available logical CPUs that were unused
so far. At 25 there is again a jump (indicated by the red dashed
line), but this time a greater one. The reason therefore is most
likely that now there are more optimization steps (and therefore
more threads) than CPUs and that the CPUs now have to be
shared among the threads.

So far the observed behavior corresponds to what has been
expected. Therefore increasing the NetLength further, it was
expected that the execution time again stays almost constant
with jumps at multiple values of physical and logical CPUs.
But what has been observed was a great jump (Indicated by the
purple dashed line) at a NetLength of 31. So far a reasonable
explanation therefore could not be found.

VII. CONCLUSION

On the whole, the implementation of the specific parts
containing the code for the actual parallelization took much
less time than understanding and refactoring the existing
sequential implementation in order to be able to parallelize
it at all regardless of which approach scheme would be used.
The most time-consuming problems were synchronizing the
access to shared resources (in emitter and collector), identi-
fying the objects that in the sequential implementation were
only instantiated once, but multiple times in the parallelized
version and implementing the required copy constructors and
assignment operators.

It is interesting how far the refactoring tools of ParaPhrase

of will support the developer in this in future, and how much
the effort will be reduced compared to manual refactoring.

Dynamic adjustment of the parallelization (e.g. used pattern
hierarchy) depending on runtime behavior will also pose a
challenge. An already mentioned example is the possible need
for a nested farm within the optimization pipeline to replace
a long running optimization stage. Whether there are stages
that need much more time for execution, or how much longer
that time it is, might not be known before the first run. This
kind of dynamic problem or execution time depended pattern
architecture might be a harder problem to solve, but would be
of much benefit to this use case. Looking at the evaluation
results concerning to speed up and scaling in comparison to
time and effort that had to be spent to achieve them, it is
obvious that it is worth to put time in. Even when using
ParaPhrase for the first time and with little experience in
parallelization at all. More practice will reduce the effort
for parallelization even more, because you get used how to
apply the parallel patterns and to avoid common pitfalls. This
effect of reduced time due to more practice seems greater
using ParaPhrase compared to low level approaches like
OpenMP, because the high-level pattern-based approach is
not as problem and implementation depended as low level
approaches are. It furthermore has to be noted that ParaPhrase
does not yet offer all planned features and tools that will
support the developer during the parallelization process, e.g.
tools for refactoring. Availability of those tools will make
parallelization even more easier and faster.

A last point that has to be mentioned concerns extensibility
and variability. The optimization framework is still in an early
stage of development. New algorithms will be added and
existing ones will have to be changed due to new requirements.
The pattern-based approach makes a proper adaption of the
parallelization easier and less expensive than it would be using
low-level parallelization strategies.
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