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Comparing Feature Selection Methods and

Choice of Distances in Hierarchical Clustering
Henrike Stephani

henrike.stephani@itwm.fraunhofer.de

Abstract

Comparing results of a hierarchical clustering with a known ground truth is a non-trivial problem as the result of

such a clustering is not just a partition of the input data in classes but a whole class hierarchy of arbitrary coarseness.

The most popular method for such a comparison is the so called FScore (Larsen and Aone 1999). Here, the dendrogram

is used to find the branch that contains most members of each original class in relation to members of other classes.

The problem with this method is that it generally does not provide a class partition that would be found automatically.

Automatic extractions are usually based on the distance levels within the dendrogram. We therefore present a cluster

evaluation scheme that finds the distance levels that provide the most correspondences with the ground truth and

validate the cluster quality by this number of correspondences.

With this method we are able to evaluate the appropriateness of different feature sets as well as different clustering

parameters such as the chosen distance measure and the chosen linkage function. In this work we compare three

different types of features sets, namely the full spectra, wavelet coefficients and certain modes of the Empirical Mode

Decomposition (EMD). These sets are evaluated with three different linkage functions – complete, single and average

linkage – and two different distance measures – Euclidean distance and cosine distance.

Throughout all feature sets it becomes clear that the cosine distance yields better results than the Euclidean distance

while the question which linkage function to choose is not as easily answered as it strongly depends on the respective

feature set. The feature set that yields the best results are the wavelet level 5 coefficients. The result of the EMD-based

clustering is very sensitive to noise within the data and to preprocessing steps applied beforehand.
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Coherence Probe Microscopy 3D Image Processing
Structural Analysis

Verena Schlager
Johannes Kepler Universität Linz

FLLL / CDL-MS-MACH

July 06, 2010

Abstract

In Coherence Probe Microscopy (CPM) one big problem is to detect noisy respectively
failure slices of the recorded image stack. Also a main question is to group slices into different
clusters (for example into different directions of the probe structure).
Before applying an analysing algorithm it is necessary to get rid of the radial illumination of
the images. Therefor the so-called rolling ball algorithm is really suitable (available in Im-
ageJ).
After preprocessing the single slices, different approaches for analysing them and the inner
structures are available.
For detecting failure images, Correlation of each slice with its neighbouring slice will be com-
puted and then the the resulting values are compared. An other approach is to compute the
l2-norm of the pixel value difference of a slice to its neighbour slice or, a more robust version,
of a slice to all the other slices and sum the results up. The disadvantage of the second version
is the considerably higher runtime. The norm analysis gives a similary result to the correlation
approach.
To get some information about the direction of the inner structure of a slice, one can do a
simple kind of Radon Transform. An other possibility is to compute the maximum average
chord lengths of an image. This approach needs more preprocessing steps and also a good
thresholding algorithm.
Also extracting feature vectors out of the images is very usefull. Afterwards one can cluster
the images by a k-Mean algorithm to group the slices into different direction groups. Further
research with other algorithms and features will be done.
Present problems in structural analysis are finding usefull features, optimal thresholding al-
gorithms and analysing algorithms with accurate runtime.
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Classifier-based analysis of visual inspection:
Significance subsumes stability

Wolfgang Heidl, Christian Eitzinger wolfgang.heidl@profactor.at

Profactor GmbH, 4407 Steyr-Gleink, AUSTRIA

Edwin Lughofer edwin.lughofer@jku.at

Johannes Kepler University, 4020 Linz, AUSTRIA

1. Introduction

Quality control typically involves the visual inspection
of products at the end of a production line. This task
is quite often done by women. Their job is to make
a quick accept/reject decision and to sort out the bad
products. Manufacturing companies often argue that
women have more endurance in performing this task
and also make decisions with better reproducibility.
To our knowledge gender differences in visual inspec-
tion decision-making have not been thoroughly inves-
tigated.

There is vast literature on sex differences in the behav-
ioral sciences concerning numerous standardized tests
on physical strength, spatial orientation, verbal and
navigation abilities to name but a few. In the er-
gonomics and human factor engineering community
visual inspection has been extensively studied (Drury
& Watson, 2002; Harris & Chaney, 1969). Gender dif-
ferences have been reported in reaction time changes
due to acoustic noise (Gramopadhye & Wilson, 1997),
however no gender difference has been found on in-
spection performance (Lehto & Buck, 2007).

We utilize ML classifiers (Hastie et al., 2009) as a
mathematical model of the decision behavior of indi-
vidual subjects (Figure 1). The goal of model identi-
fication, also known as learning, is to generalize from
subject responses to specific stimuli to all stimuli stem-
ming from the same random process. Once a ML clas-
sifier has been trained that generalizes well, the classi-
fier parameters convey the task-relevant information
on subject decision behavior. Further analysis can
then be based on these parameters.

Classifiers have recently been successfully applied to

This work has been supported by the FEMtech pro-
gram of The Federal Ministry for Transport, Innovation
and Technology under FFG grant No. 318113. It reflects
only the authors’ views.
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Figure 1. Classifiers modeling human decisions in visual
inspection. During training the classier parameters (dis-
played as tuning knobs) are adjusted to minimize the dis-
crepancy between human and classier decisions.

complex visual inspection tasks (e.g. (Eitzinger et al.,
2009; Lughofer et al., 2009)). However, up to now
they are mainly based on considerations of statistics
and probability distributions of the features that they
classify (Vapnik, 1999; Hastie et al., 2009). The fact
that the decision is originally made by a human is often
neglected. Consequently, there has been no investiga-
tion of differences in male and female decision-making
from the viewpoint of classifiers.

Unlike classical parametric and latent variable models
(Skrondal & Rabe-Hesketh, 2004) the model param-
eter and structure identification process during clas-
sifier training includes some form of randomization,
sometimes already within the actual learning algo-
rithm, but most often when the expected classification
error is Monte-Carlo estimated for validation and com-
plexity tuning(Stone, 1974). Depending on classifier
stability (Bousquet & Elisseeff, 2002) those random ef-
fects propagate to the identified parameters and hence
to our model of subject decision-behavior. This gives
rise to the question of whether lack of classifier stabil-
ity could result in observed gender differences that are
merely spurious.



Gender differences in visual inspection decision-making

Statistical hypothesis testing (Neyman & Pearson,
1933; Fisher, 1966) is precisely concerned with assess-
ing the likelihood of effects being observed by ”luck of
the draw”. Following the line of (Ludbrook & Dud-
ley, 1998) we adopt the Fisherian model of statistical
inference and assess statistical significance with per-
mutation tests (Good, 1994). We show that the errors
resulting from randomized model identification are —
with respect to statistical significance — no different
from the omnipresent measurement errors and there-
fore do not change validity of permutation tests over
so-identified measures. Classifier instability can not
increase significance, therefore statistical significance
of observed effects implies sufficient stability for that
purpose.

Permutation tests confirm the significance of previ-
ously reported results (Heidl et al., 2010) that have
been tested with classical t-tests. We extend those re-
sults by significant differences identified using CART
(Breiman et al., 1993) decision trees. Additionally,
we show that significant model-free gender differences
exist, based solely on the analysis of binary subject
responses.
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