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Abstract In this survey we review the most important properties of copulas, several
families of copulas that have appeared in the literature, and which have been applied
in various fields, and several methods of constructing multivariate copulas.
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1 Historical introduction

The history of copulas may be said to begin with Fréchet [69]. He studied the fol-
lowing problem, which is stated here in dimension 2: given the distribution functions
F1 and F2 of two random variables X1 and X2 defined on the same probability space
�Ω ,F ,P�, what can be said about the set Γ �F1,F2� of the bivariate d.f.’s whose
marginals are F1 and F2? It is immediate to note that the set Γ �F1,F2�, now called
the Fréchet class of F1 and F2, is not empty since, if X1 and X2 are independent,
then the distribution function �x1,x2�(F�x1,x2� =F1�x1�F2�x2� always belongs to
Γ �F1,F2�. But, it was not clear which the other elements of Γ �F1,F2� were.

Preliminary studies about this problem were conducted in [64, 70, 88] (see also
[30, 181] for a historical overview). But, in 1959, Sklar obtained the deepest result
in this respect, by introducing the notion, and the name, of a copula, and proving
the theorem that now bears his name [191]. In his own words [193]:
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[...] In the meantime, Bert (Schweizer) and I had been making progress in our work on
statistical metric spaces, to the extent that Menger suggested it would be worthwhile for
us to communicate our results to Fréchet. We did: Fréchet was interested, and asked us to
write an announcement for the Comptes Rendus [183]. This began an exchange of letters
with Fréchet, in the course of which he sent me several packets of reprints, mainly dealing
with the work he and his colleagues were doing on distributions with given marginals. These
reprints, among the later arrivals of which I particularly single out that of Dall’Aglio [28],
were important for much of our subsequent work. At the time, though, the most significant
reprint for me was that of Féron [64].

Féron, in studying three-dimensional distributions had introduced auxiliary functions,
defined on the unit cube, that connected such distributions with their one-dimensional mar-
gins. I saw that similar functions could be defined on the unit n-cube for all n C 2 and would
similarly serve to link n-dimensional distributions to their one-dimensional margins. Having
worked out the basic properties of these functions, I wrote about them to Fréchet, in English.
He asked me to write a note about them in French. While writing this, I decided I needed
a name for these functions. Knowing the word “copula” as a grammatical term for a word
or expression that links a subject and predicate, I felt that this would make an appropriate
name for a function that links a multidimensional distribution to its one-dimensional mar-
gins, and used it as such. Fréchet received my note, corrected one mathematical statement,
made some minor corrections to my French, and had the note published by the Statistical
Institute of the University of Paris as Sklar [191].

The proof of Sklar’s theorem was not given in [191], but a sketch of it was pro-
vided in [192] (see also [184]), so that for a few years practitioners in the field had
to reconstruct it relying on the hand–written notes by Sklar himself; this was the
case, for instance, of the second author. It should be also mentioned that some “in-
direct” proofs of Sklar’s theorem (without mentioning copula) were later discovered
by Moore and Spruill [144] and Deheuvels [36]

For about 15 years, all the results concerning copulas were obtained in the frame-
work of the theory of Probabilistic Metric spaces [185]. The event that arose the
interest of the statistical community in copulas occurred in the mid seventies, when
Bert Schweizer, in his own words (see [182]),

quite by accident, reread a paper by A. Rényi, entitled On measures of dependence and
realized that [he] could easily construct such measures by using copulas.

See [165] for Rényi’s paper. The first building blocks were the announcement by
Schweizer & Wolff in the Comptes Rendus de l’Académie des Sciences [186] and
Wolff’s Ph.D. Dissertation at the University of Massachusetts at Amherst [199].
These results were presented to the statistical community in the paper [187] (com-
pare also with [200]).

However, for several other years, Chapter 6 of the fundamental book [185] by
Schweizer & Sklar, devoted to the theory of Probabilistic metric spaces and pub-
lished in 1983, was the main source of basic information on copulas. Again in
Schweizer’s words from [182],

After the publication of these articles and of the book . . . the pace quickened as more
. . . students and colleagues became involved. Moreover, since interest in questions of sta-
tistical dependence was increasing, others came to the subject from different directions. In
1986 the enticingly entitled article The joy of copulas by C. Genest and R.C MacKay [81],
attracted more attention.
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In 1990, Dall’Aglio organized the first conference devoted to copulas, aptly
called “Probability distributions with given marginals” [31]. This turned out to be
the first in a series of conferences that greatly helped the development of the field,
since each of them offered the chance of presenting one’s results and to learn those
of other researchers; these conferences were held in Seattle in 1993 [175], in Prague
in 1996 [11], in Barcelona in 2000 [25], in Québec in 2004 [74, 75], and in Tartu in
2007 [118]; the next one is scheduled to be in São Paulo in 2010.

At end of the nineties, the notion of copulas became increasingly popular. Two
books about copulas appeared and were to become the standard references for the
following decade. In 1997 Joe published his book on multivariate models [103], with
a great part devoted to copulas and families of copulas. In 1999 Nelsen published
the first edition of his introduction to copulas [149] (reprinted with some new results
in [150]).

But, the main reason of this increased interest has to be found in the discovery
of the notion of copulas by researchers in several applied field, like finance. Here
we should like briefly to describe this explosion by quoting Embrechts’s comments
[56]:

As we have seen so far, the notion of copula is both natural as well as easy for looking at
multivariate d.f.’s. But why do we witness such an incredible growth in papers published
starting the end of the nineties (recall, the concept goes back to the fifties and even earlier,
but not under that name). Here I can give three reasons: finance, finance, finance. In the
eighties and nineties we experienced an explosive development of quantitative risk man-
agement methodology within finance and insurance, a lot of which was driven by either
new regulatory guidelines or the development of new products; see for instance Chapter 1
in [137] for the full story on the former. Two papers more than any others “put the fire to the
fuse”: the [...] 1998 RiskLab report [57] and at around the same time, the Li credit portfolio
model [120].

The advent of copulas in finance [78] originated a wealth of investigations about
copulas and, especially, applications of copulas. See, for example, the books [180,
19, 137, 129]. At the same time, different fields like hydrology [76, 176] discovered
the importance of this concept for constructing more flexible multivariate models.
Nowadays, it is near to impossible to give a complete account of all the applications
of copulas to the many fields where they have be used. As Schweizer wrote [182]:

The “era of i.i.d.” is over: and when dependence is taken seriously, copulas naturally come
into play. It remains for the statistical community at large to recognize this fact. And when
every statistics text contains a section or chapter on copulas, the subject will have come of
age.

However, a word of caution is in order here. Several criticisms have been recently
raised about copulas and their applications, and several people started to speak about
“copula craze” [56]. See, for example, the very interesting discussion related to the
paper by Mikosch [139, 140] (see also [55, 84, 92, 104, 125, 160, 188]).

From our point of view, these criticisms were a quite natural reaction to such a
wide diffusion of applications of copulas, not always in a well motivated way. It
should be said that several people have wrongly interpreted copulas as the solution
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to “all problems of stochastic dependence”. This is definitely not the case! Copu-
las are an indispensable tool for understanding several problems about stochastic
dependence, but they are not the “panacea” for all stochastic models.

Despite this broad range of interest about copulas, we still believe that this con-
cept is still in “its infancy” [150] and several other investigations may (and should)
be conducted in order to stress whether copulas, or related copula-based concepts,
can be really considered as a “strong” mathematical concept worth of use in several
applications (see Section 8).

1.1 Outline of the paper

This paper is so organized. Section 2 presents some basic notions of probability
theory that will be used in the sequel. A basic introduction to copulas is given in
section 3, while the importance of copulas for stochastic models is illustrated in
sections 4 and 5. Families of copulas and construction methods are illustrated in
section 6. Finally (section 8), we present a discussion about possible open problems
in the field.

A final remark should be given here. This survey is intended to be a basic in-
troduction to multivariate copulas, focusing on some theoretical aspects that we
consider essential for understanding any application. We do not present any result
about the statistical procedure for fitting copulas to data. The reader will find such
an information in the rest of this book (see [12, 100, 179]). In writing it, we have
tried to provide a list of references as complete as possible. Obviously, it may hap-
pen that several important papers have been not cited: we apologize in advance for
this.

Other surveys concerning copulas (from various perspectives) can be found as
well in the literature; just to make few same examples, we refer the interested reader
to [30, 56, 73, 76, 93, 117, 158, 181, 189, 193, 195].

2 Preliminaries on random variables and distribution functions

In this section, we recall the bare minimum that is necessary in order to understand
the meaning and the use of copula. All this material can be found in standard books
on probability theory, like [13, 105, 198].

To begin with, we need to establish basic notation. Let d > N. In the sequel, x
denotes a vector �x1,x2, . . . ,xd� in Rd (or Rd

= �−ª,+ª�d). If not otherwise stated,
all expressions such as min�x,y� or x B y are intended to be componentwise oper-
ations. The symbol I will denote the unit interval �0,1�. We shall always use the
expressions, “increasing”and “decreasing”in the weak sense; thus, a real function
ϕ defined on a subset �a,b� of the real line R, will be said to be increasing (re-
spectively, decreasing) if, for all x and y in �a,b� with x < y, one has ϕ�x� B ϕ�y�
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(respectively, ϕ�x� C ϕ�y�). Moreover, a real-valued function ϕ is said to be posi-
tive (respectively, strictly positive) if ϕ�x� C 0 (respectively, ϕ�x� A 0) for every x
belonging to the domain of ϕ .

A probability space is a triplet �Ω ,F ,P�, where Ω is a nonempty set, F is a
σ–algebra of subsets of Ω and P is a probability measure on F . A d–dimensional
random vector is a measurable mapping X � Ω � Rd

; in this case, the word mea-
surable means that the counter image X−1�B� of every Borel set B in B�Rd� be-
longs to F . It can be proved that a random vector X can be represented in the form
X = �X1,X2, . . . ,Xd� where, for every j > �1,2 . . . ,d�, X j is a 1–dimensional random
vector, also called random variable. Usually, the abbreviation r.v. will denote a ran-
dom vector (possibly, univariate).

When a r.v. X = �X1,X2, . . . ,Xd� is given, two problems are interesting:

• to study the probabilistic behaviour of each one of its components;
• to investigate the relationship among them.

It will be seen how copulas allow to answer the second one of these problems in an
admirable and thorough way.

It is a general fact that in probability theory, theorems are proved in the probabil-
ity space �Ω ,F ,P�, while computations are usually carried out in the measurable

space �Rd
,B�Rd�� endowed with the law of the random vector X. The study of the

law PX is made easier by the knowledge of the distribution function, as defined here.

Definition 2.1. Given a random vector X = �X1,X2, . . . ,Xd� on the probability space

�Ω ,F ,P�, its distribution function FX�R
d
� I is defined by

FX�x1,x2, . . . ,xd� = P�
d
�
i=1
�Xi B xi�� (1)

if all the xi’s are in R, while:

(DF1) FX�x1,x2, . . . ,xd� = 0, if at least one of the arguments equals −ª,
(DF2) FX�+ª,+ª, . . . ,+ª� = 1.

Very often, the abbreviation d.f. will be used instead of “distribution function”.
Sometimes, we also use the term joint d.f. for denoting the d.f. of a random vec-
tor having, at least, two components.

In order to describe the properties of a d.f., we need to introduce some prelimi-
nary notations.

Definition 2.2. Given two points a,b > Rd
with a B b, a d–box �a,b� (also called

orthotope) is the cartesian product

�a,b� =
d
�
i=1
�ai,bi� , (2)
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Let A be a convex set in Rd
. For a bounded function H � A� R, the H–volume VH

of the d–box �a,b� b A is defined by

VH ��a,b�� �= Q
v>�d

i=1�ai,bi�
�−1�N�v�H�v�, (3)

where N�v� = card� j S vi = ai�, provided that ai < bi for every i > �1,2, . . . ,d�. Other-
wise, we set VH ��a,b�� = 0.

Theorem 2.1. The d.f. FX of the r.v. X = �X1,X2, . . . ,Xd� has the following proper-
ties:

(DF3) F is isotonic, i.e. F�x� B F�y� for all x,y >Rd , x B y;
(DF4) for all �x1, . . . ,xi−1,xi+1, . . . ,xd� >Rd−1, the function

R ? t ( FX�x1, . . . ,xi−1,t,xi+1, . . . ,xd�
is right–continuous;

(DF5) the FX–volume VFX of every d–box �a,b� is positive, i.e., VFX ��a,b�� C 0.

Condition (DF5) in the previous theorem is called the d–increasing property (or
quasi-monotone property) of a d–dimensional d.f.; it simply means that the proba-
bility that the r.v. X takes values in the box �a,b� is positive. Analogously, a function

F �Rd
�R satisfies (DF5) if, and only if, it has positive finite differences of order d,

namely if
∆

d
ad ,bd

. . .∆ 1
a1,b1

F C 0

for all ai B bi for every i > �1,2, . . . ,d�, where ∆
i
ai,bi

is the finite difference operator
given by

∆
i
ai,bi

F = F�t1, . . . ,ti−1,bi,ti+1, . . . ,td�−F�t1, . . . ,ti−1,ai,ti+1, . . . ,td�.

Note that, one can prove (see, e.g., [13]) that for every F �Rd � I satisfying con-
ditions (DF1)–(DF5), there is a probability space �Ω ,F ,P� and a random vector X
on it such that F is the d.f. of X. We will use the symbol X � F in order to denote
the fact that F is the d.f. of X (or, equivalently, X is distributed according to F).

A fundamental notion will be that of marginal distribution of a d–d.f. F .

Definition 2.3. Let d C 2 and let F be a d–dimensional d.f.. Let σ = � j1, . . . , jm� a
subvector of �1,2, . . . ,d�, 1 Bm B d−1. We call σ -marginal of F the d.f. Fσ �R

m
� I

defined by setting d−m arguments of F equal to +ª, namely, for every x1, . . . ,xm >

R,
Fσ�x1, . . . ,xm� = F�y1, . . . ,yd�, (4)

where, for every j > �1,2, . . . ,d�, y j = x j if j > � j1, . . . , jm�, and y j = +ª otherwise.
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In particular, when σ = � j�, F� j� is usually called 1–dimensional marginal and it
is denoted by Fj.

Obviously, if F is the d.f. of the r.v. X = �X1,X2, . . . ,Xd�, then the σ–marginal of
F is simply the d.f. of the subvector �X j1 , . . . ,X jm�.

As is well known, if the r.v.’s X1, X2, . . . , Xd are independent and if Fi denotes
the d.f. of Xi �i = 1,2, . . . ,d�, then the d–dimensional d.f. of the random vector X =
�X1,X2, . . . ,Xd� is the product of the marginals, i.e. for all x1,x2, . . . ,xd >R,

FX�x1,x2, . . . ,xd� =
d

M
i=1

Fi�x j�.

A random vector X (equivalently, its d.f. FX) is said to be absolutely continuous
if there exists a positive measurable function fX �Rd �R+ (called the density of F)
such that

S
Rd

fX dλd = 1,

where λd is the Lebesgue measure on Rd , and the d.f. FX can be represented in the
form

FX�x� = S
x1

−ª

dt1 S
x2

−ª

dt2 . . . S
xd

−ª

fX�t1,t2, . . . ,td�dtd . (5)

For a univariate absolutely continuous d.f. F , we shall use the notion F � U ��a,b��
(read: F is uniformly distributed on �a,b�) to denote the fact that F is absolutely
continuous with density f �t� = �b−a�−11�a,b��t�, where 1�a,b� denoted the indicator
function of �a,b�.
Remark 2.1. Let X be a r.v. such that P�X > A� = 1 for some A b Rd . Then, the d.f.
FX is uniquely determined by the value that it assumes on A and, as a consequence,
one usually refrains from specifying the value of FX outside A. For such a situation,
we may say shortly that FX is a d.f. on A.

Remark 2.2. In several contexts (especially, reliability theory), it is more useful
to consider the survival function FX associated with a given random vector X =
�X1,X2, . . . ,Xd�, where, for every i > �1,2, . . . ,d�, Xi C 0 almost surely (i.e., Xi can
be interpreted as a “lifetime”), and given by

FX�x1,x2, . . . ,xd� = P�
d
�
i=1
�Xi A xi�� . (6)

The univariate survival marginal of FX are then defined in an analogous way by
setting some of the arguments of F equal to 0. Note that survival functions are
decreasing in each argument.
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3 Copulas: definitions and basic properties

We start with the definition of a copula.

Definition 3.1. For every d C 2, a d–dimensional copula (shortly, d–copula) is a d–
variate d.f. on Id whose univariate marginals are uniformly distributed on I.

Thus, each d-copula may be associated with a r.v. U = �U1,U2, . . . ,Ud� such that
Ui � U �I� for every i > �1,2, . . . ,d� and U �C. Conversely, any r.v. whose compo-
nents are uniformly distributed on I is distributed according to some copula.

The class of all d–copulas will be denoted by Cd .
Since copulas are multivariate d.f.’s, as a consequence of the results stated in

section 2, they can be characterized in the following equivalent way.

Theorem 3.1. A function C�Id� I is a copula if, and only if, the following properties
hold:

(C1) for every j > �1,2, . . . ,d�, C�u�= u j when all the components of u are equal
to 1 with the exception of the j-th one that is equal to u j > I;

(C2) C is isotonic, i.e. C�u� BC�v� for all u,v > Id , u B v;
(C3) C is d–increasing.

As an easy consequence, we can prove also that C�u� = 0 for every u > Id having
at least one of its components equal to 0. Another interesting property of a d–copula
C is that it is a Lipschitz function, namely, for all u,v > Id , one has

SC�u�−C�v�S B
d

Q
i=1
Sui−viS. (7)

By using Ascoli-Arzelá Theorem, one can show that Cd is a compact set in the set of
all continuous functions from Id into I equipped with the product topology, which
corresponds to the topology of pointwise convergence. Moreover, in Cd pointwise
and uniform convergence are equivalent (see also [32]).

Basic examples of copulas are:

• the independence copula Πd �u� = u1u2�ud associated with a random vector U =
�U1,U2, . . . ,Ud� whose components are independent and uniformly distributed
on I;

• the comonotonicity copula Md �u� =min�u1,u2, . . . ,ud� associated with a vector
U = �U1,U2, . . . ,Ud� of r.v.’s uniformly distributed on I and such that U1 =U2 =

ċ ċ ċ =Ud almost surely;
• the countermonotonicity copula W2 �u1,u2� =max�u1+u2−1,0� associated with

a vector U = �U1,U2� of r.v.’s uniformly distributed on I and such that U1 = 1−U2
almost surely.

By using Theorem 3.1 it is easy to show that the set Cd is convex. Convex com-
binations of copulas have the following probabilistic interpretation (compare with
[142]).
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Example 3.1 (Convex combinations of copulas). Let U1 and U2 be two d–dimen-
sional r.v.’s on the probability space �Ω ,F ,P� distributed according to the copulas
C1 and C2, respectively. Let Z be a Bernoulli r.v. such that P�Z = 1� = α and P�Z =
2� = 1−α for some α > I. Suppose that U1, U2 and Z are independent. Now, consider
the d–dimensional r.v. U�

U� = σ1�Z�U1
+σ2�Z�U2

where, for i > �1,2�, σi�x� = 1, if x = i, σi�x� = 0, otherwise. Then, it could be proved
that U� is distributed according to the copula α C1

+�1−α�C2.

Example 3.2 (Fréchet–Mardia copulas). Let CFM
d be the d–copula given by

CFM
d �u� = αΠd �u�+�1−α�Md �u� (8)

for every λ > I. These copulas can be considered as a multivariate version of the bi-
variate families by Fréchet and Mardia (see [71, 131]). They are obtained as convex
sum of the copulas Πd and Md .

Example 3.3. Let X = �X1,X2, . . . ,Xd� be a r.v. whose components are independent
and identically distributed according to FXi�t� = tα for every t > I and for some α > I.
Let Z be a random variable, independent of X, whose d.f. is given by FZ�t� = t1−α

on I. Intuitivelly, Z might be interpreted as a shock that will change the dependence
structure of X. We define another r.v. Y such that, for every i > �1,2, . . . ,d�, Yi =

max�Xi,Z�. Now, it can be easily proved that the joint d.f. of Y is, in fact, a copula
given by

CCA
d u = �Πd �u��α �Md �u��1−α

, (9)

which belongs to the Cuadras-Augé family of copulas (see [24] and also [23]). The
idea of considering families of d.f.’s associated with some shock model had its ori-
gin in the seminal paper by Marshall and Olkin (see [133]), where the multivariate
exponential distribution was considered (see also [121, 122, 147])). Further gener-
alizations of these methods have recently provided several constructions of copulas,
as can be seen from [43, 49, 126, 127, 128].

The following result gives upper and lower bounds in Cd (see, for example, [150,
Theorem 2.10.12]).

Theorem 3.2 (Fréchet–Hoeffding bounds). For every Cd > Cd and for every u > Id ,

Wd �u� =max�
d

Q
i=1

ui−d+1,0¡ BC�u� BMd �u� . (10)

Moreover, the following bounds are sharp, in the sense that the pointwise infimum
and supremum of all the elements of Cd coincide, respectively, with Wd and Md , i.e.
for all u > Id:

inf
C>Cd

C�u� =Wd�u�, sup
C>Cd

C�u� =Md�u�.
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Notice that, while W2 is a copula, Wd is not a copula for d C 3.
The Fréchet–Hoeffding bounds appeared for the first time in the present form in

an article by Fréchet (see [69]). An earlier version had already be given by Hoeffd-
ing ([94]), but with reference to the square �−1~2,1~2�2. A very general formula-
tion of it, including the proof of the sharpness of these bounds, has been given by
Rüschendorf [172].

Several investigations have been conducted about the bounds for multivariate
d.f.’s (see [15, 153, 168]), especially when some additional information is given, like
lower dimensional marginals [37, 45, 103], and measures of association [151, 155].
In this context, the concept of quasi–copula plays a special rôle [2, 26, 83, 152, 156,
171].

4 Sklar’s Theorem

Sklar’s theorem is the building block of the theory of copulas; without it, the concept
of copula would be one in a rich set of joint distribution functions.

Theorem 4.1. Let F be a d–dimensional d.f. with univariate margins F1, F2,. . . , Fd .
Let A j denote the range of Fj, A j �=Fj�R� � j = 1,2, . . . ,d�. Then there exists a copula

C such that for all �x1,x2, . . . ,xd� >Rd
,

F�x1,x2, . . . ,xd� =C�F1�x1�,F2�x2�, . . . ,Fd�xd�� . (11)

Such a C is uniquely determined on A1 �A2 � ċ ċ ċ �Ad and, hence, it is unique when
F1, F2,. . . , Fd are all continuous.

Sklar’s theorem has been announced in [191], however its first proof for the bi-
variate case appeared in [184]. Curiously, it should be noted that in [191], the author
“Abe Sklar” is named as “M. Sklar” (we conjecture that this “M.” should be intended
as “Monsieur”).

Another (bivariate) proof can be also found in [16], based on the so–called
“checkerboard copulas”. A multivariate proof, based on the distributional trans-
form, has been recently presented in [174] (compare also with [144, Lemma 3.2]).
Another possible proof can be also derived (for positive random variables) from
[14]. Sklar’s Theorem on more abstract spaces has been given in [178].

Theorem 4.1 also admits the following converse implication, usually very impor-
tant when one wants to construct statistical models by considering, separately, the
univariate behaviour of the components of a random vector and their dependence
properties as captured by some copula.

Theorem 4.2. If F1, F2,. . . , Fd are univariate d.f.’s, and if C is any d–copula, then
the function F �Rd

� I defined by (11) is a d–dimensional distribution function with
margins F1, F2,. . . , Fd .
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By summarizing, from any d–variate d.f. F one can derive a copula C via (11).
Specifically, when Fi is continuous for every i > �1,2, . . . ,d�, C can be obtained by
means of the formula

C�u1,u2, . . . ,ud� = F�F−1
1 �u1�,F−1

2 �u2�, . . . ,F−1
d �ud��, (12)

where F−1
i denoted the pseudo–inverse of Fi given by F−1

i �s� = inf�t S Fi�t� C s�.
Thus, copulas are essentially a way for transforming the r.v. �X1,X2 . . . ,Xd� into
another r.v. �U1,U2, . . . ,Ud� = �F1�X1�,F2�X2�, . . . ,Fd�Xd�� having the margins uni-
form on I and preserving the dependence among the components.

On the other hand, any copula can be combined with different univariate d.f.’s
in order to obtain a d–variate d.f. by using (11). In particular, copulas can serve
for modelling situations where a different distribution is needed for each marginal,
providing a valid alternative to several classical multivariate d.f.’s such Gaussian,
Pareto, Gamma, etc. (compare with [73]). This fact represents one of the main ad-
vantage of the copula’s idea, as underlined by Mikosch [139]:

There is no simple alternative to the Gaussian distribution in the non-Gaussian world. In
particular, one needs multivariate models for portfolios with different marginal distributions
(including different tail behavior) and a dependence structure which is determined not only
by covariances. Many of the well known multivariate distributions are not flexible enough
to allow for different tail behavior in different components. Therefore copulas seem to be
the right tools in order to overcome the mentioned difficulties: they generate all multivariate
distributions with flexible marginals.

Remark 4.1. The copula representation is usually very convenient, as stressed for
example by Kimeldorf and Sampson [108], who referred to it as uniform represen-
tation. However, following [56], it should be stressed that

there is absolutely no real, compelling mathematical reason for transforming the marginal
d.f.’s of F to uniform d.f.’s on I, though it may be useful from a statistical point of view.
In his 1940 paper [96], Hoeffding used the interval �− 1

2 , 1
2 �. In multivariate Extreme Value

Theory, it is standard to transform to unit Fréchet marginal d.f.’s. In this context, Resnick
[166, page 265] writes “How one standardizes is somewhat arbitrary and depends on taste.
Different specifications have led to (superficially) different representations in the literature”.

As investigated recently in [114], other ways for transforming r.v.’s to having some
standard margins may be more convenient in some cases.

Remark 4.2. Theorem 4.1 should be used with some caution when the margins have
jumps. In fact, even if there exists a copula representation for not-continuous joint
d.f.’s, it is no longer unique. In such cases, modelling and interpreting dependence
through copulas is subject to caution. The interested readers should refer to the semi-
nal paper by Marshall [132] and to the in-depth discussion by Genest and Nešlehová
[82].

Finally, notice that Theorems 4.1 and 4.2 can be formulated in an analogous
way in terms of survival functions instead of d.f.’s. Specifically, given a r.v. X =
�X1,X2, . . .Xd� with joint survival function F and univariate survival marginals F i

�i = 1,2, . . . ,d�, for all �x1,x2, . . . ,xn� >Rd
it holds that:
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F�x1,x2, . . . ,xd� = ÂC�F1�x1�,F2�x2�, . . . ,Fd�xd�� . (13)

for some copula ÂC, usually called survival copula of X (to be intended as a copula
associated with the survival function of X).

In particular, let C be the copula of X and let U = �U1,U2, . . . ,Ud� be a vector
such that U �C. Then, one has

ÂC�u� =C�1−u1,1−u2, . . . ,1−ud�,
where C�u� = P�U1 A u1,U2 A u2, . . . ,Ud A ud� is the survival function associated
with C, explicitly given by

C�u� = 1+
d

Q
k=1
�−1�k Q

1Bi1<i2<�<ikBn
Ci1i2�ik�ui1 ,ui2 , . . . ,uik�, (14)

with Ci1i2�,ik denoting the marginal of C related to �i1, i2,� , ik�.

5 Copulas and random vectors

Here, we should like to discuss some probabilistic properties of copulas that can
be inferred from Sklar’s Theorem. These results appeared already in [192] (for the
proofs, see [137, 150]).

First, we state the invariance of the copula of the r.v. X with respect to any in-
creasing rescaling of the components of X.

Proposition 5.1. Let X = �X1, . . . ,Xd� be a r.v. with continuous d.f. F, univariate
marginals F1,F2 . . . ,Fd , and copula C. Let T1, . . . ,Td be strictly increasing functions
from R to R. Then C is also the copula of the r.v. �T1�X1�, . . . ,Td�Xd��.

Thus, copulas that describe the dependence of the components of a random vector
are invariant under increasing transformations of each coordinate. Therefore, as said
in [187],

the study of rank statistics – insofar as it is the study of properties invariant under such
transformations – may be characterized as the study of copulas and copula-invariant prop-
erties.

The next results characterize some special structures of r.v.’s in terms of the basic
copulas Πd , Md , and W2.

Proposition 5.2. Let �X1,X2, . . . ,Xd� be a r.v. with continuous joint d.f. F and uni-
variate marginals F1, . . . ,Fd . Then the copula of �X1, . . . ,Xd� is Πd if, and only if,
X1, . . . ,Xd are independent.

Proposition 5.3. Let �X1,X2, . . . ,Xd� be a r.v. with continuous joint d.f. F and
univariate marginals F1, . . . ,Fd . Then the copula of �X1, . . . ,Xd� is Md if, and
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only if, there exists a r.v. Z and increasing functions T1, . . . ,Td such that X =
�T1�Z�, . . . ,Td�Z�� almost surely.

Proposition 5.4. Let �X1,X2� be a r.v. with continuous d.f. F and univariate margi-
nals F1,F2. Then �X1,X2� has copula W2 if, and only if, for some strictly decreasing
function T , X2 = T�X1� almost surely.

Obviously Proposition 5.4 cannot be extended to dimension d with d C 3; in
fact, it is impossible for each one of the d random variables X1, X2,. . . , Xd to be
a decreasing function of the remaining ones.

A r.v. X as in Proposition 5.3 is said to have a comonotone dependence. This
concept has several important consequences in applications, as described in [38, 39].
The related concept described in Proposition 5.4 is known as countermonotonicity.

A recent generalization of comonotonicity has been provided in [161].

6 Families of copulas

As underlined, copulas play an important role in the construction of multivariate
d.f.’s and, as a consequence, having at one’s disposal a variety of copulas can be very
useful for building stochastic models having different properties that are sometimes
indispensable in practice (e.g., heavy tails, asymmetries, etc.). Therefore, several
investigations have been carried out concerning the construction of different families
of copulas and their properties. Here, we present just a few of them, by focusing on
the families that seem to be more popular in the literature. Different families (or
construction methods) are discussed in the rest of this book (see [27, 87, 95]).

Before presenting these examples, we would like briefly to discuss the use of
these families for copula-fitting procedures. For several researchers and practition-
ers it seems enough to try to fit any stochastic model with the most convenient
family and check that the fitting procedure is not so “bad”. However, it should be
stressed that any fitting procedure may be misleading if one were to describe any
situation with families of copulas satisfying some unnecessary assumptions (e.g.,
exchangeability, light tails, etc.). In our opinion, before applying any statistical tool,
one should not forget to analyse the main characteristics of the model under con-
sideration. At the same time, one should have clearly in mind the final output of the
investigation. Usually, in fact, fitting a copula (or a joint d.f.) to some data is just a
tool for deriving some quantities of interest for the problem at hand (e.g., VaR of
a portfolio, return period of an extreme event, etc.). For such problems, a dramatic
underestimation of the risk can be obtained when one tries to fit with copulas that
do not exhibit any peculiar behaviour in the tails. This was exactly one of the main
criticisms to the use of Li’s model for credit risk using Gaussian copulas (see, for
example, [120, 197]).

Inspired by some considerations of Joe [103], we discuss here some general prop-
erties that a “good” family of multivariate copulas �Cθ�, where θ is a parameter
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belonging to a (usually, compact) subset Θ b Rp �p C 1�, should have for being
considered “interesting” in statistical applications.

• Interpretability. The members of the family should have some probabilistic inter-
pretation suggesting “natural” situations where this family could be considered.
For instance, as we have seen in Example 3.3, Cuadras-Augé copulas have a
quite direct interpretation in terms of shock models, making this class suitable
for modelling situations where a common shock has consequences on a system
composed by several components (credit portfolio, lifetime system, etc.).

• Flexible and wide range of dependence. The members of the family should de-
scribe different types of dependence, including the independence copula Πd and
one of the Fréchet-Hoeffding bounds (possibly, as a limiting case with respect to
the parameter). Having members with a variety of tail dependencies and asym-
metries is a desirable property as well.

• Easy-to-handle. The members of the family should be expressed in a closed form
or, at least, should be easily simulated by means of some known algorithm. No-
tice, in fact, that several goodness-of-fit procedures are based on the fact that the
fitted family can be readily sampled (see [12] and the references therein).

Notice that several families of copulas recently introduced seem not to be “good”
in the above sense. This should be not surprising. On one hand, the above properties
are intentionally be given in a very restrictive way, on the other hand, one should
consider that several new constructions have been introduced and studied more for
their mathematical elegance and interest than for a practical implementation. It is
our opinion that in the future more attention should be devoted to this latter aspect:
there are no clever applications without a beautiful theory!

6.1 Elliptical copulas

A random vector X = �X1,X2 . . . ,Xd� is said to have an elliptical distribution with
mean vector µ >Rd , covariance matrix Σ = �σi j� and generator g��0,+ª�� �0,+ª�,
and one writes X � E�µ,Σ ,g�, if it can be expressed in the form

X = µ +RAU, (15)

where AAT
= Σ is the Cholesky decomposition of Σ , U is a d–dimensional random

vector uniformly distributed on the sphere Sd−1
= �u >Rd

� u2
1+ċ ċ ċ+u2

d = 1�, and R
is a positive random variable independent of U, with density given, for every r A 0,
by

fg�r� = 2π
d~2

Γ �d~2� r
d−1g�r2�.

The density function (if it exists) of an elliptical distribution is given, for every
x >Rd , by

hg�x� = SΣ S−1~2g��x−µ�T Σ
−1�x−µ�� . (16)
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For more details, see [61, 62, 67, 77, 137].
For instance, when g�t� = �2π�−d~2 exp�−t~2�, then X has a multivariate Gaus-

sian distribution. Similarly, g�t� = c�1+ t~ν�−�d+ν�~2, for a suitable constant c, gen-
erates the multivariate t-Student distribution with ν degrees of freedom.

One of the characteristics of an elliptical distribution is that the scaled compo-
nents X1~ºσ11, . . . ,Xd~ºσdd are identically distributed according to a d.f. Fg. This
fact represents a limitation to the use of such distributions for modelling stochas-
tic systems when the components are not similar. In order to avoid this, it is useful
to calculate the copula of a multivariate elliptical distributions and use it, together
with some univariate marginal d.f.’s, for obtaining more flexible models. These dis-
tributions, constructed by means of Theorem 4.2, are usually called meta-elliptical
distribution [62]. For these reasons, we give the following

Definition 6.1. Let X be an elliptical random vector, X � Ed�µ,Σ ,g�. Suppose that,
for every i > �1,2, . . . ,d�, �Xi~ºσii� � Fg. We call elliptical copula the distribution
function of the random vector

�Fg� X1º
σ11
� ,Fg� X2º

σ22
� , . . . ,Fg� Xdº

σdd
�� .

An elliptical copula is typically not available in closed form. In order just to
provide an example, the bivariate Gaussian copula is given by

Cθ �u1,u2� = S
Φ
−1�u1�

−ª
S

Φ
−1�u2�

−ª

1

2π
º

1−θ 2
�− s2

−2θst + s2

2�1−θ 2� �dsdt,

where θ > �−1,1�, and Φ
−1 denotes the inverse of the univariate Gaussian distribu-

tion.

6.2 Archimedean copulas

Here we present the basic properties and examples of the Archimedean class of
copulas. Basically, we follow the approach in [136] (see also [135]).

First, we introduce some notations. We call Archimedean generator any decreas-
ing and continuous function ψ ��0,ª�� I that satisfies the conditions ψ�0� = 1,
limt�ªψ�t� = 0 and which is strictly decreasing on �0, inf�t S ψ�t� = 0��. By con-
vention, ψ�+ª� = 0 and ψ

−1�0� = inf�t C 0 S ψ�t� = 0�, where ψ
−1 denotes the

pseudo–inverse of ψ .

Definition 6.2. A d–dimensional copula C is called Archimedean if it admits the
representation

C�u� =ψ �ψ−1�u1�+ψ
−1�u2�+ċ ċ ċ+ψ

−1�ud�� (17)

for all u > Id and for some Archimedean generator ψ .
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Functions of type (17) have been widely considered and studied in the literature,
especially in connexion with the investigations about semigroups of the unit interval.
The reader interested about all these aspects should look at the following books
[1, 111, 185] and the references therein.

The following result characterizes Archimedean copulas in terms of the proper-
ties of their generators; it can be found in [136].

Theorem 6.1. Let ψ be an Archimedean generator. Let Cψ be the function given
by (17). Then Cψ is a d–dimensional copula if, and only if, the restriction of ψ to
�0,ª� is d–monotone, i.e. it satisfies:

(a)ψ is differentiable up to the order d−2 in �0,+ª� and the derivatives satisfy

�−1�kψ
�k��t� C 0 for k > �0,1, . . . ,d−2�

for every t A 0,
(b)�−1�d−2

ψ
�d−2� is decreasing and convex in �0,+ª�.

Example 6.1 (Gumbel–Hougaard copula). The standard expression for members of
this family of d–copulas is

CGH
θ �u� = exp

�
�
�
−�

d

Q
i=1
�− log�ui��θ�

1~θ�
�
�

(18)

where θ C 1. For θ = 1 we obtain the independence copula as a special case, and the
limit of CGH

θ
for θ �+ª is the comonotonicity copula. The Archimedean generator

of this family is given by ψ�t�= exp�−t1~θ�. Each member of this class is absolutely
continuous.

Copulas of this type can be derived from the work by Gumbel [90] and have
been further considered by Hougaard [97]. For this reason, this family is named as
Gumbel-Hougaard family [98].

Example 6.2 (Mardia-Takahasi-Clayton copula). The standard expression for mem-
bers of this family of d–copulas is

CMTC
θ �u,v� =max

¢̈̈
¦̈̈̈
¤̈
�

d

Q
i=1

u−θ
i −�d−1��

−1~θ
,0

£̈̈
§̈̈̈
¥̈

(19)

where θ C
−1

d−1 , θ x 0. The limiting case θ = 0 corresponds to the independence
copula.

The Archimedean generator of this family is given by

ψθ �t� = �max�1+θ t,0��−1~θ
.

It was proved in [136] that, for every d–dimensional Archimedean copula C and for
every u > Id , CMTC

θL
�u� BC�u� for θL = −

1
d−1 .
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Copulas of this type can be derived from two types of multivariate distributions:
the Pareto distribution by Mardia [130] and the Burr distribution by Takahasi [194].
They were mentioned as bivariate copulas in [108] and as multivariate copulas in
[21], subsequently extended in [80]. A special member of this family can also be
derived from the bivariate logistic model of first type by Gumbel [91]. As showed
by Oakes [157], bivariate copulas of type (19) are associated with the Clayton’s
model [20]. For this reason, many people referred to this family as the Clayton’s
family of copulas. Here, we prefer to name it as Mardia-Takahasi-Clayton family
of copulas.

Example 6.3 (Frank copula). The standard expression for members of this family of
d–copulas is

CFr
θ �u� = −

1
θ

log
�
�1+

Ld
i=1 �e−θui −1�
�e−θ

−1�d−1

�
� , (20)

where θ A 0. The limiting case θ = 0 corresponds to Πd . For the case d = 2, the
parameter θ can be extended also to the case θ < 0.

Copulas of this type have been introduced by Frank [68] in relation with a prob-
lem about associative functions on I. They are absolutely continuous.

The Archimedean generator is given by ψθ �t� = − 1
θ

log�1−�1−e−θ �e−t�.

6.3 EFGM copulas

The so-called Eyraud-Farlie-Gumbel-Morgenstern (shortly, EFGM) distributions
have been considered by Morgenstern [145] and Gumbel [88, 89], further devel-
oped by Farlie [63]. However, the idea of considering such distributions originated
in an earlier and, for many years, forgotten work by Eyraud [60]. Here, we present
the EFGM family of copulas that can be derived from the papers just mentioned.

Let d C 2. Let S be the class of all subsets of �1,2, . . . ,d� having at least 2 ele-
ments. Trivially, S contains 2d

−d −1 elements. To each S > S , we associate a real
number αS, with the convention that, when S = �i1, i2, . . . , ik�, αS = αi1i2...ik .

An EFGM copula can be expressed in the following form:

CEFGM
d �u� =

d

M
i=1

ui
�
�1+Q

S>S
αSM

j>S
�1−u j�

�
� , (21)

for suitable values of the αS’s.
For the bivariate and trivariate cases, respectively, EFGM copulas have the fol-

lowing expressions:

CEFGM
2 �u1,u2� = u1u2 �1+α12�1−u1��1−u2�� , (22)

and
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CEFGM
3 �u1,u2,u3� = u1u2u3�1+α12�1−u1��1−u2�+α13�1−u1��1−u3�

+α23�1−u2��1−u3�+α123�1−u1��1−u2��1−u3��.
(23)

It is not so difficult to show that any FGM copula is absolutely continuous with
density given by

cEFGM
d �u� = 1+Q

S>S
αSM

j>S
�1−2u j�. (24)

As a consequence, the parameters αS’s have to satisfy the following inequality

1+Q
S>S

αSM
j>S

ξ j C 0

for any ξ j > �−1,1�. In particular, it holds that SαSS B 1.
On account of the fact that EFGM copulas do not allow the modelling of large

dependence among the random variables involved, several extensions have been
proposed in the literature, starting with the works by Farlie [63] and Saramanov
[177]. A complete survey about these generalized EFGM models of dependence is
given in [40], where a list of several other references can be also found. More recent
investigations are also provided in [4, 5, 6, 65, 169]. Another possible approach for
extending EFGM copulas is based on the construction of copulas that are quadratic
in one variable [163, 170].

7 Costructions of copulas

Several constructions of copulas have been developed during the years from a va-
riety of perspectives. At an abstract level, all these methods start with some known
copulas and/or some auxiliary functions (sometimes, possible sections of copulas)
and generate in an automatic way “new” copulas. Essentially, three kinds of such
constructions can be distinguished.

7.1 Copulas with given lower dimensional marginals

These constructions are strictly related to the original Fréchet problem of consid-
ering distribution functions with fixed marginals (eventually overlapping). In this
context the most interesting results have been obtained by means of the “condition-
ing method”, as used by Dall’Aglio [28, 29] and Rüschendorf [173]. Joe presented
several results of this type in [103, chapter 3]. A powerful recent method based on
these ideas is the so-called pair-copula construction (for more details, see [27] and
the references therein). For related recent studies, see [46, 116]. Other construc-
tions can be found in [162] (direct compatibility), [95] (nested constructions), and
[17, 66, 115, 123].
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7.2 Copula-to-copula transformations

Constructions of this second kind aim at transforming d–copulas into other d–
copulas having possibly some additional features (for example, having a larger num-
ber of parameters). Specifically, the following cases have been extensively studied.

7.2.1 Ordinal sums

The ordinal sum construction for (bivariate) copulas is fully described in [150, 185].
This construction was introduced in an algebraic framework, namely the theory of
semigroups. Then, it was translated into the language of triangular norms (briefly,
t–norms), which are binary operations on I that are associative, commutative, mono-
tonic and with neutral element 1 (see [1, 111, 185]), and, finally, it was applied as
well to bivariate copulas (which, in fact, can be seen also as special binary opera-
tions on I). An extension of the ordinal sum construction to Cd has been recently
discussed in [138] and [101, 102]. This method is essentially based on a kind of
“patchwork procedure”, consisting of redefining the value that a copula assume on
a d–box B of Id by plugging–in a suitable rescaling of another copula. For other
recent investigations of this type, see [33, 50, 190]. Following [138], we give the
following result.

Theorem 7.1. Let J be a finite or countable subset of N and let ��ak,bk��k>J be a
family of sub–intervals of I indexed by J and let �Ck�k>J be a family of copulas in
Cd also indexed byJ . It is required that any two of the intervals �ak,bk� �k >J � have
at most an endpoint in common. Then the ordinal sum C of �Ck�k>J with respect to
family of intervals ��ak,bk��k>J is the d–copula defined, for all u > Id by

C�u� �=
¢̈̈
¨̈̈
¦̈̈
¨̈̈¤

ak +�bk −ak�Ck �min�u1,bk�−ak
bk−ak

, . . . ,
min�ud ,bk�−ak

bk−ak
� ,

if min�u1,u2, . . . ,ud� > �ak,bk� for some k >J ,
min�u1,u2, . . . ,ud�, elsewhere.

(25)

For such a C one writes C = �`ak,bk,Cke�k>J =>��ak,bk��k>J �Ck.

7.2.2 Distortions

Given a copula C and an increasing bijection ψ � I� I, the distortion of C is defined
as the function Cψ �Id � I,

Cψ�u� =ψ�C�ψ−1�u1�,ψ−1�u2�, . . . ,ψ−1�ud���. (26)

Such a transformation has originated from the study of distorted probability distri-
bution functions (especially, power distortions), and has been considered by sev-
eral authors like [3, 18, 42, 52, 54, 73, 85, 112, 113, 150, 146]. In reliability the-



20 Fabrizio Durante and Carlo Sempi

ory, this kind of transformation is used in order to introduce the so-called bivariate
ageing function that are used for the definition of bivariate notion of ageing (see
[8, 9, 53, 148]). In the context of synthetic Collateralized Debt Obligations (CDOs),
distortions of copulas have been recently used in order to produce a heavy tailed
portfolio loss distribution [22].

7.2.3 Pointwise composition of copulas

Given two copulas A and B in Cd , we define as composition of A and B through
some suitable functions H �I2� I, fi�I� I and gi�I� I �i = 1,2, . . . ,d�, any mapping
CA,B�Id � I given by

CA,B�u� =H �A� f1�u1�, . . . , fd�ud��,B�g1�u1�, . . . ,gd�ud��� . (27)

To the best of our knowledgement, the idea of such constructions arose in the
Khoudraji’s work [107], and, then, studied and further generalized in [23, 41, 79,
124]. Although, formally, distortions of copulas can be included in this class (for a
suitable choice of H), we prefer to distinguish these constructions, following their
historical development.

7.2.4 Shuffles of copulas

These constructions are based on the transformation of a copula C into another one
by means of a suitable rearrangement of the original mass distribution of C. The
idea goes back to the notion of shuffles of Min, as introduced in [143], and is related
to some modifications of the copula Md (see also [141]). A recent generalization is
discussed in [51].

7.3 Geometric constructions of copulas

The third kind of constructions refers to methods for originating copulas starting
with some information about their structure (for example, support, diagonals, sec-
tions). For a good overview to these constructions, the reader should refer to [150,
chapter 3]. More recent investigations are listed below.

• copulas with given support: see [72];
• copulas with given horizontal and/or vertical sections: see [48, 110, 167, 170,

196];
• copulas with given diagonal sections: see [34, 35, 44, 47, 59, 101, 102, 134, 154];
• copulas with given affine sections [109, 164].
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8 Copula theory: what’s the future?

Above we have described, sometimes in a sketchy manner, the state of some, if not
most, of the known results about copula theory; thus, the title of the present section
poses a very natural question. It is hard to foresee the future, but there certainly are
a few directions that we feel the investigations about copulas and their applications
are likely to take. Running the risk of being completely, or even partially, proved
wrong, we venture to put forward the following suggestions for likely directions of
future investigations:

New constructions of copulas. The search for families of copulas having prop-
erties desirable for specific applications in various fields ought to continue to be
important. Having at one’s disposal several families of copulas (spanning dif-
ferent behaviour) is essential in order to create a wider spectrum of possible
scenarios for the stochastic model at hand. This is of special interest to assist in
decision making the risk managers and, under Basel Accords, it is mandatory for
large banks to determine their risky positions. In particular, we think that special
emphasis will be devoted to the search for copulas exhibiting different asymme-
tries, (non-exchangeable copulas, copulas with different tail behaviour, etc.).

The compatibility problem. Given that one just has some vague idea about the
dependence of a r.v. X (for example, one knows the lower dimensional marginals
of X or some dependence measures among its components), the question is
whether one can describe the set of all possible copulas of X, compatible with
the given information. As said, this problem has its roots at early works on the
Fréchet classes, but its popularity have recently increased due to its connection
with several problems arising in risk aggregation (see, e.g., [58]).

Copulas and stochastic processes. Starting with the seminal paper by Darsow,
Nguyen and Olsen [32] linking copulas and Markov processes, it is still a mat-
ter of discussion whether copulas can be really useful for describing space-time
dependence structure (see also [119]). In this respect, the recent concept of Lévy-
copula (see [7, 10, 106, 99]) seems quite powerful and promising for modelling
the large class of Lévy processes.
Other investigations related related to copulas and time-changing dependence
structure can be found in [86, 159].
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11. Beneš, V., Štěpán, J. (eds.): Distributions with given marginals and moment problems.
Kluwer Academic Publishers, Dordrecht (1997)

12. Berg, D.: Copula goodness-of-fit testing. In: F. Durante, W. Härdle, P. Jaworski, T. Rychlik
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bivariate distribution functions with given margins and measures of association. Comm.
Statist. Theory Methods 30 (6), 1155–1162 (2001)

152. Nelsen, R.B., Quesada-Molina, J.J., Rodrı́guez-Lallena, J.A., Úbeda-Flores, M.: Some new
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168. Rodrı́guez-Lallena, J.A., Úbeda-Flores, M.: Best-possible bounds on sets of multivariate dis-

tribution functions. Comm. Statist. Theory Methods 33 (4), 805–820 (2004)
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