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PREFACE

When I first attended a C++ class back in 1994, the focus of the lecture was
on the then still new idea of object orientation. It was not until some years
later—and some other computer language classes passed, such as Fortran, Java,
LISP, and Prolog—, that I realized that the C++ language had more to offer
than just object orientation.

When I started to work at Fuzzy Logic Laboratorium Linz (FLLL), for me this
meant the shift from theoretical examples to practical, every-day work with
these languages and the related libraries and techniques. The more I got used
to STL’s container-iterator-algorithm style of programming, the more I strived
to reformulate certain problems from our institute’s main development focus –
fuzzy computation and image processing – in terms of this new paradigm.

It was this desire which triggered my interest in, and inspired the work on an
implementation of the data/view model. I decided to try to design a “view”
library in the style and spirit of the Boost collection of C++ libraries. One
detail, but a major one, was how to “group” or “zip” elements together in an
appropriate way; in other words, how to form tuples. This work resulted not only
in another library, but also in the further interest on topics such as generative
programming. The theoretical background—everything I learned during the
work on these libraries—forms the backbone of this thesis.

The two libraries—Boost.View and Boost.Tupple—are now available at the
Boost sandbox, the playground for not-yet-reviewed potential Boost libraries.
For more information on the Boost libraries in general, and on how to obtain
the main libraries and the sandbox, please visit http://www.boost.org.

I would like to thank many people who, directly or indirectly, contributed to
this thesis. Many thanks go to the Boost community; most notably to those
who bothered to discuss design issues and implementation details, such as David
Abrahams, Jaakko Järvi, Gary Powell, Vladimir Prus, and Martin Weiser.

The ideas of the Tupple library were developed mainly during a CEEPUS visit at
Politechnika Krakowska. Thanks to Professor Piotr Kulczycki and Alek Mazgaj
for a nice and productive stay.

Finally I’d like to thank Prof. Peter Klement for providing the environment and
freedom to encourage such work; several colleagues at Software Competence
Center Hagenberg, in particular Ulrich Bodenhofer and Markus Mittendorfer;
and the whole staff of the FLLL.

Linz, October 2004
Roland Richter

http://www.boost.org
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1. THE DATA/VIEW MODEL

If I must apply a descriptive la-
bel, I use the phrase ‘multipara-
digm language’ to describe C++.

- Bjarne Stroustrup1

1.1 The evolution of C++

Over the years, the C++ language evolved from its predecessor C, which was
limited to the imperative paradigm, to a multi-paradigm language which allows
imperative, object oriented, generic, and functional style of programming.

We will consider one basic and important task, namely the element-wise ap-
plication of a function to the elements of a collection, to demonstrate how the
evolution of C++ enabled new forms of programming: from the simple for-loop
to the container-iterator-algorithm style of the Standard Template Library to
state-of-the-art “smart iterators”.

Doing this, it will become obvious that there is still one further step to be done:
namely to add “smart containers” in order to simplify the use of smart iterators.
This so-called data/view model not only provides a means to replace explicit
loops: it extends the generic programming paradigm of C++.

So here is our example which will guide us from the old imperative paradigm
to generic programming, to the use of smart iterators, and beyond:

Given a collection of elements, and a function which acts element-
wise, apply the function to all elements of the collection.

1.1.1 The imperative paradigm

C was clearly an imperative language. With the transition from C to C++,
object orientation was added to the scope of the language. Although from time
to time there were discussions on C++ not being an object oriented language,
it is nowadays widely accepted that C++ allows object oriented style of pro-
gramming.

1 Bjarne Stroustrup, Why C++ is not just an Object-Oriented Programming Language,
Addendum to OOPSLA95 Proceedings, ACM OOPS Messenger, October 1995.



1. The data/view model 8

However, imperative style is probably still the most common one used when
solving our little example. Hence, in C or C++ (or Java), the usual way is to
write a loop which iterates over all the containers’ elements, and would more or
less look like this:

ElementType source [N] , result [N] ;

for ( int i = 0; i != N; ++i )
result [ i ] = function( source [ i ] ) ;

It’s basic, simple, often used – so why looking for something different? Here are
some reasons2:

• It relies on certain assumptions concerning the container type. In our
case, both containers must provide so-called random access via operator [].
This is not true for associate containers, trees and the like.

• It is error prone. A loop as above relies on i being not changed within
the loops’ body. N has to be the correct size of the source container,
and the size of the target container must be at least N. If one of these
constraints is violated, undefined behaviour and program crashes are the
likely consequence.

• It obscures what’s happening. The first thing one sees when examining
code like that is – well, that there is a loop. Only a closer look at the
loop’s body does reveal what actually is done; this might be difficult if the
body is longer than a few lines.

1.1.2 Language elements

The above code fragment has a certain structure, and there are several different
elements which make up this structure.

• Two containers – containing the source and the result elements.
In typed languages such as C/C++, containers are usually intended to
contain elements of one certain type. Therefore, containers can be charac-
terized by their structure (random access, associative, tree-like, etc.) plus
the type of their elements.

• A function – which maps elements from source to target.
Its argument type must match the element type of the source container,
whereas its result type must match the element type of the target con-
tainer. (“To match” here does essentially mean that the later type is
convertible into the former one).

• An access mechanism – how to get elements out of containers.
In our case, this is done via an index and the (built-in) element access
operator []. It is assumed that we can use indices – which requires a certain
type of container.

2 For more criticism on external iteration, see, for instance, [Küh99, Chapter 10].
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• A “for all ... do” mechanism – how to tie everything together.

It should be noted that for those who do not mind using plain pointer arithmetic,
the statement above can be rewritten like this:

ElementType∗ r = result ;
for ( ElementType∗ s = source ; s != source + N; ++s , ++r )
∗r = function( ∗s ) ;

Sure, this does not make the loop more readable – just the opposite – but it
is essentially the same and does not modify the underlying structure. The four
language elements which we identified above are still present. Note that this way
of writing things down inspired the iterator syntax which was later introduced
within the STL.

1.2 Towards a new paradigm

Regarding the C++ programming language, the last decade was dominated by
a long-lasting standardization process. It was finally brought to a successful
end with the publication of the C++ Standard in September 1998 and the
release of the first fully standard conforming C++ compiler gcc-3.0 in June
2001. The Standard Template Library (STL), a C++ library which provides
container classes, iterators (into these containers) and algorithms, is part of
the standard. Its design and the wide-spread use of the STL introduced a new
paradigm, which is nowadays usually called generic programming. This was only
possible due to the introduction of a new language feature, namely the template
mechanism3. The techniques which templates made possible were the focus of
heavy research efforts during the last years, and it seems that their immense
power is still not fully understood yet.

In the following, we will describe three important steps which influenced the
way how to solve our example:

New container classes: Blank C arrays are stupid and error-prone. One of
the most important features of STL was the introduction of various con-
tainer classes plus their corresponding iterators. Iterators can be thought
of as pointers into the container, pointing to one element at a time. In
fact, the syntax of STL’s iterators is as close as possible to plain C pointer
arithmetic (and in simple cases, such as for std :: vector, an iterator is noth-
ing else than an element pointer).

As a consequence, one of our language elements, namely the access mech-
anism, has changed. No longer we are limited to use indices; it is as well
possible (and usual) to use iterators, which will result in code like this:

vector<ElementType> source(N) , result (N); // or another STL container

3 According to an interview given by Alex Stepanov which appeared in Dr. Dobb’s Magazine
in March 1995. Taken from http://www.sgi.com/tech/stl/drdobbs-interview.html

http://www.sgi.com/tech/stl/drdobbs-interview.html
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i terator res = result . begin () ;
for ( i terator src = source . begin () ; src != source .end() ; ++src , ++res )
∗res = function( ∗src ) ;

Functions as first class objects: Yes, in C it was possible to assign func-
tions, to pass functions as other functions arguments, to write functions
which returned functions – everything in the form of function pointers,
which made the code rather hard to read [KR88].

However, these functions pointers required an exact function signature (for
instance, a function of type int f( int) was not convertible to one of type
int f(double), although int was convertible to double), which resulted in
the excessive use of void∗ arguments. Binding an argument of the function,
or composing was difficult.

The template mechanism of C++ enabled a much more convenient and
safe way to handle functions. In the sequel, the STL introduced the notion
of function object or functor : a function object is simply anything that can
be called as if it were a function, including ordinary functions, function
pointers and objects of a class which defines operator(). An adaptable
function object additionally provides typedefs to identify its argument and
result types. This makes it relatively to easy to define meta-functions
which operate on functions to give other functions, in STL called function
object adaptors, for instance bind and compose.

What was left to be done was to link containers and their iterators to
function objects. In STL, this is done via algorithms, and they became the
third major component of STL. This step affected two language elements:
instead of a function, we have a function object; and, as a consequence,
the loop is now replaced by an STL algorithm:

transform( source . begin () , source .end() , result . begin () , function ) ;

Container

Iterator
x -> f(x)

Function object

Algorithm(_,_)

cre
ate

s

Figure 1.1. The layout of “classical” STL programming: con-
tainers, iterators, and functions are glued together via algorithms.
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Smart iterators: Iterators are used if one needs access to sequentially orga-
nized data, typically data which is stored within a container (or array).
However, sometimes we don’t want to use the original data, but want
to transform it (i.e. to apply a function), to select some parts of it, to
reorder its elements, to combine it with other data, etc. before going
on. The usual way to do this is to create another container, to iterate
over the old container, transform/select/reorder/combine the iterated el-
ements, and to store the resulting data in the new container (which, in
turn, provides its own iterators).

This is somehow tedious, and we might do better. Following the wide-
spread use of iterators, there were several attempts to add more func-
tionality to iterators, i.e. to combine the iteration mechanism (“start at
the first element – go step by step from the current element to the next
one – return the current element – until the one-past-the-end element is
reached”) with additional functionality.

For instance, a “smart iterator” might read as “start at the first element –
go step by step from the current element to the next one – apply a function
to the current element and return the result – until the one-past-the-end
element is reached” (a so-called transform iterator) or as “start at the first
element – go step by step from the current element to the next one, but ig-
nore all elements which do not satisfy a given predicate – return the current
element – until the one-past-the-end element is reached” (a so-called fil-
tering iterator) etc. Two approaches to provide smart iterators are [BB00]
and the iterator adapters library of Boost, see http://www.boost.org.

When iterators get smart, STL algorithms are replaced by simpler ones.
The functionality is transferred to the smart iterator, which has to be
initialized with a “dumb” iterator and a function:

copy( transform iterator ( source . begin () , function ) ,
transform iterator ( source .end() , function ) ,
result . begin() ) ;

1.3 State of the art: a multi-paradigm mix

So there are we now: We have better containers at hand. Their design both
resulted in the replacement of arrays by container classes and pointers by iter-
ators. Functions became first class members of our language. Iterators became
“smart”, and we find ourselves in a multi-paradigm environment. We started
with an imperative style and introduced more and more of the generic paradigm,
which, paradoxically, allowed us to write programs which look like functional
style.

Of course, we know that the paradigm one uses does strongly influence the way
how to solve a specific problem, how efficient the implementation is (and how
efficient it can be at best), how neatly it fits into the language framework, how
reusable and, last but not least, how readable it is.

What is there left to be done?

http://www.boost.org
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Algorithm(_)

Container

Iterator

cre
ate

s

initializes

Smart iterator =
Iterator + Function object

x -> f(x)

Figure 1.2. The layout if smart iterators enter the scene: the
function object is now part of the smart iterator.

1.4 One further step

Although it is not a completely perfect analogy, the next step might be described
as making containers “smart”, too 4.

In terms of iterators, getting smarter meant that, instead of simply iterating
over an already existing collection of elements and passing one after the other,
smart iterators are able to create elements on the fly, to skip certain elements, to
change the order of elements etc. A smart iterator wraps a “dumb” iterator and
adds some functionality. Smart iterators do not modify their contents; however,
from the outside it appears as if they modified it.

Along the same principles we might design “smart” containers: instead of simply
containing elements, they should create them just-in-time, hide some of them,
modify the ordering in which the elements appear, and so on. A smart container
should wrap a “dumb” container and adds some functionality. Again, this does
not mean that a smart container should modify its underlying container. These
containers act as if they modified their contents, without actually doing it.

In short, we can identify the two sides from which we can see such a smart
container:

• inside, there is the underlying, unmodified data

• from the outside, we only can see a modified view of the data

Therefore the name – the data/view model. We might summarize the facts on
views up to now and try to give some sort of a definition of views. It might be
like this: “A view does wrap a container and presents the container’s data to its
clients. The presented data will be some modified version of the original one;
however, the underlying data is not modified in any way; it just appears from
the outside as if it was modified. Views provide an interface which is as close
as possible to that of the wrapped container class.”

4 A completely different solution is provided in [Küh99] called the transfold pattern.
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1.4.1 Historical notes

The term “view” occurs in computer science at different places, most often in
the sense of “encapsulate the knowledge how to present some underlying data”,
for instance with the Smalltalk Model/View/Controller triad.

The first to introduce views in our sense was Jon Seymour [Sey95] in 1995. His
work was then inspired by the analogy to relational views of relational database
theory.

The yet most complete implementation of views is the View Template Library
by Powell and Weiser [PW99][WP00].

1.4.2 Various interpretations of views

Views as container proxies/decorators: Lets try to classify views in term
of design patterns as introduced by [GHJV95]. By construction, views are
meant as a stand-in replacement for STL container classes. Especially,
they should provide exactly the same interface as containers. However,
they do add some functionality: elements of the underlying container are
presented in some modified way.

Speaking in terms of design patterns, views as placeholders for containers
might be seen as instances of the Proxy pattern. Views as classes which
attach additional functionality to container classes might be interpreted
as the static form of the Decorator pattern. In the words of [GHJV95], “a
decorator adds one or more responsibilities to an object, whereas a proxy
controls access to an object”. Well, a view does both (in most cases).

More precisely, views can be seen as virtual proxies since they create
objects on demand; as protection proxies because they control access to
the underlying containers elements and usually prohibit write access.

Originally, decorators are described to attach functionality dynamically,
i.e. at run-time. Views are not a dynamic, but a static concept: they
change the behaviour of the underlying class at compile-time. Still, the
analogy seems justified, especially since the implementation of decorators
and the implementation of views show some remarkable parallels.

One must not get confused by the frequent use of the term “adaptor”5 in
the STL world, as opposed to “Adapter” in the sense of design patterns.
The term “adaptor” was first introduced with the concept of function
object adaptors in the STL, and later used for various other concepts, for
instance in the term “iterator adaptor”. Its meaning might be described
as “wrap an existing object, do add some functionality, and provide the
same interface as the underlying object’s class”. Contrary, an “Adapter”,
as described in [GHJV95], “converts the interface of a class into another
interface clients expect”. “Adaptors” usually do not change interfaces.
Hence, most often, the term “adaptor” might be translated as “static
decorator”.

Views as smart iterator factories: Since views do mimic STL container
classes as close as possible, they certainly have to provide methods begin()

5 Interestingly, always written with an “o”: adaptor.
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and end(), i.e. methods to return smart iterators to the first and one-past-
the-end element, respectively.

The concrete type of the smart iterator depends, of course, on the type of
the view. Different views of the same container can give different smart
iterators. Insofar, as much as STL containers can be seen as factories
of iterators, views can be seen as factories of smart iterators (compare
[WP00]).

Views in relational database theory: Another, quite different way to think
about views is to consider them as an analog of a relational view in rela-
tional database theory, as did Jon Seymour [Sey95] in his original work.

1.5 Characteristics of views

Algorithm(_)

cre
ate

s

View = Container + Function object

x -> f(x)

Smart iterator
x -> f(x)

Figure 1.3. The data/view model: since a view contains informa-
tion on both the underlying container and the function object, it
can generate the corresponding smart iterator.

In some sense, with “classical” STL-like containers, iterators and containers are
bound closely together, whereas the function is only coupled via STL algorithms.
Smart iterators change the picture in that they contain the function object;
still, they have to be initialized using an ordinary iterator. In contrast, with
data/view-like containers, functions are integrated into containers, which no
longer produce dumb, but smart iterators. These “mechanics” of these three
techniques are depicted in figures 1.1, 1.2, and 1.3, respectively.

1.5.1 When to use views (and when not)

In short, views might be used
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• to replace explicit loops: Our original motivation was to reconsider the
use of a loop. However, the STL already did that: it replaced explicit
loops by more specific algorithms. Therefore, it is justified to go one step
further and identify a second use of views:

• to replace STL algorithms: Indeed, tasks like transformation of data, fil-
tering, reordering etc. all find their corresponding algorithm in the STL;
in the sequel, some STL algorithm do something will be replaced by the
corresponding do something view. It is, however, not possible to replace all
algorithms, and the reason will become clear in a moment.

As a rule of thumb,

• views are appropriate whenever the function is local, i.e. “element-wise”
or restricted

• views are not appropriate whenever the function requires global informa-
tion A simple example would be to find out the maximum element of a
container: we can’t calculate the maximum without considering every el-
ement of the container, that is, maximum is no local operation. The same
is true for sorting, etc.

1.5.2 The interface of a view

Saying that a view’s interface should be as close as possible to the interface of
a STL container does enclose some vagueness. Enumerating what the interface
of a view must in fact contain results in the following list:

1. Constructors which take a container as argument

2. Destructor

3. Copy constructor, assignment, swap()

4. begin(), end()

5. rbegin(), rend()

6. size (), max size(), empty()

7. operator []

8. Various typedefs

9. operator== (this implicitly defines operator=! as well)

10. operator< (operator>, operator<=, and operator>= are all implemented in
terms of operator<):

11. Usually not : insert (), erase (), clear () and the like
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1.5.3 Container ownership

As we already mentioned, a view does not exist on its own. Instead, they
are only adaptors of their underlying containers. The question arises how this
relationship should be designed, i.e. how a views does “own” its underlying
container. There are three possibilities to design this relationship:

a) As a copy of its own: The safest way to handle container ownership is to
keep a copy of the container within each view. This would be appropriate,
for instance, if we plan to pass views around, or if we want to keep a
view even if the underlying container is going to be destroyed. However,
as a consequence, whenever the view is constructed, copy constructed, or
assigned, we have to do a deep copy, which might be quite time-consuming.

b) As a reference (or pointer): The cheapest way (in terms of both time
efficiency and memory consumption) for a view to own a container is to
hold a reference or pointer to it. In that case, one has to make sure that the
view is invalidated whenever its container is destroyed to prevent dangling
references (or pointers).

c) As a reference-counted copy: This is a compromise between safety and
efficiency: copying is done only once, namely if the view is constructed
with the container as an argument. In the case of copy construction and
assignment, however, the reference count is simply increased, which a
relatively cheap operation compared to copying the whole container.

1.5.4 Eager versus lazy evaluation

A view (and, also a smart iterator) does contain (or reference) its underlying
container; it does not, however, contain the transformed elements it gives back
when the element access method (operator [], or dereference operator∗, respec-
tively) is called. Instead, the transformed elements are generated on the fly, i.e.
only when needed. This behaviour is called lazy evaluation (as opposed to eager
evaluation). It increases efficiency if only part of the data is used.

1.6 The functional paradigm

Only relatively recently, the C++ community undertook efforts to enable the
use of the functional paradigm within C++. Already the STL introduced the
notion of function objects, and hence made functions first class objects of the
language. This lead to libraries implementing the functional paradigm (and even
lambda calculus) to the full extent. The power of these features was explored
by several libraries, for instance the FC++ library [SM01], and the Lambda
library[SS00].

A program written in a pure functional language consists of just one thing –
functions. Typically, functional languages provide a set of meta-functions which
take functions as arguments and apply it in a certain way.

For instance, in Mathematica(TM), the function Map does apply a function to
each element of a list; hence, our example might be solved like this:
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result = Map[ function , source ] ;

Again, we can identify the major participants and compare them to those of the
imperative paradigm:

• Two containers - typically built-in in functional languages

• A function - passed as an argument to a higher-level function

• A meta function - typically implemented via recursion



2. A CATALOGUE OF VIEWS

There are many paths to the top
of the mountain, but the view is
always the same.

- Ancient Chinese Proverb

2.1 Design issues and questions

The first chapter was devoted to the “philosophical” aspects of the data/view
model, its place in the historical context, and how it fits into the generic pro-
gramming paradigm.

In this chapter, we list a “catalogue” of individual view classes, and focus our
attention onto the issues of the functionality and structure these individual view
classes have, when and how to apply them, and how they interact.

Before proceeding, it is reasonable to consider some general issues which are of
importance when dealing with views in general.

1. One point we have to ask is: does the view concern the contents or the
structure of the underlying container? With “contents” we mean the val-
ues of the containers’ elements; with “structure” its size and the arrange-
ment of the elements. This difference will especially get clear in the dis-
cussion of permutation view.

2. Most views take one container, some more than one. There is yet another
type of views which, as an exception to the rule, do not reference to an
underlying container at all.

3. Some views do allow read and write access to their elements (better: to
the elements of the underlying container), others do prohibit write access
and allow read access only. Of course it would be nice to design views such
that element access is read and write, but in some cases there is simply
no sensible way to do this. Further on, allowing to write elements also
raises problems if more than one view does reference to the underlying
collection.

In general, views will be read-only unless there is a “straight-forward” way
to allow writing.

4. Views are always closely connected to their (smart or adapted) iterators.
As we will see later when thinking about how to implement views, the
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most practical way is first to select the corresponding iterator, and only
then to implement the view itself.

5. Some views are suitable to replace one (sometimes even more than one)
STL algorithm; however, there seems to be no systematic relation between
views an algorithms. “Views” and “algorithms” are two related, but yet
different ways of how to solve certain problems.

6. One issue we will give focus when it comes to the topic of implement-
ing views will be that of runtime efficiency. The C++ standard imposes
runtime efficiency characteristics to STL container operations; sometimes
views have a different characteristics.

The overview and terminology is in part extracted from the View Template
Library (compare [PW99], [WP00]) and the work on iterator adaptors (see, for
instance, [BB00] and [AS01]). Other parts were added. In some sense, this
catalogue constitutes a “wish-list” for what one might expect as part of a view
library.

2.2 Transform view

2.2.1 Overview

Given an underlying container and a transform function, a transform view
presents a view of the container where each element is the result of applying the
transformation function to the corresponding underlying element.

2.2.2 Description

Transform view might be regarded as one of the basic and most “typical”
applications of the view concept. Its functionality (together with filtering,
see Section 2.4) was the core of Jon Seymour’s original work [Sey95], and
transform iterator is one of the basic usages of Boosts’ iterator adaptor library.

A transform view does affect the contents of a container, not the structure.
That is, it does operate on the values of elements, but their relative position
within the collection, as well as the collections’ size, is unchanged. Insofar, it is
a little bit untypical, because most views which we will learn in the sequence do
in some sense restructure the elements of the collection, but do not touch their
original value.

Further, a transform view does not support write access to its elements. To
make it writable, it would be necessary to calculate the inverse of the transform
function, which, in turn, would force the function being bijective. Deciding
that this is too much effort for too little gain, a transform view will always be
read-only in our treatment.

2.2.3 Application

• Use it as a replacement of the transform algorithm of STL
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Figure 2.1. Transform view: the transform function is applied to
each element.

• Transform views might be nested in the same way as functions might be

• The function of the transform view may either be fixed at compile time
or be chosen at run-time

• Transform views might also be used to sub-sample a continuous function
at a (possibly non-uniform) discrete grid

2.3 Permutation view

2.3.1 Overview

A permutation view applies a “re-indexing scheme” to the elements of the un-
derlying container. A re-indexing scheme is, in its simplest form, just another
container representing the new arrangement of the elements, containing the
indices pointing into the underlying container. A more advanced usage is to
generate the scheme “on-the-fly” via the use of another view.

There are very weak requirements which this scheme has to fulfil. Especially,
the scheme is not necessarily injective, or surjective; it might be of different
size than the underlying container; it might even have an index type different
of that of the underlying collection. This flexibility makes it possible to solve a
wide variety of tasks using a permutation view.

2.3.2 Description

In short, we might say that a permutation view takes the contents (i.e. the
values represented by the elements) of one container and the structure (i.e. the
position of the elements, expressed through their indices) of another container
and merges both into a new container. The permutation view presents elements
of the first container at positions determined by the second one.

In Figure 2.2, for instance, the first element of the view (i.e. that one with
index 0) is element number eight of the original container (i.e. that one with
index 7). The element itself comes from the first container, its position within
the view is determined by the second container.

Note that it is valid to assign one and the same elements of the container to
several positions of the view; for instance, former element number 3 now appears
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253 8 934127 3

0 1 765432 8 109 11

7 3 483125 3 29

Figure 2.2. Permutation view: all elements are re-arranged ac-
cording to a re-index scheme.

at positions 1, 5, and 8. On the other hand, some elements of the original
collection are missing in the view, for instance, elements 10 and 11. Finally, the
size of the view is not equal to the size of the collection; it might be smaller (as
in our case), bigger, or even empty. From that it gets clear that the size of the
view is that of the re-indexing scheme; and the view is empty if and only if the
scheme is.

However, creating the re-indexing scheme by hand is somewhat clumsy, and
might cost unnecessary time and space. In a way it is not “as lazy as it could
be”. The (obvious) way to overcome it is to provide the re-indexing scheme in
form of another view, for instance as a function view .

253 8 934127 3

0 1 765432 8 109 11

7 3 483125 3 29

g(0) g(1) g(7)g(6)g(5)g(4)g(3)g(2) g(8) g(10)g(9) g()

Figure 2.3. Permutation view: the re-index scheme might be pro-
vided via a re-indexing function.

A permutation view allows both read and write access; this is not in contradic-
tion with the fact that the permutation might be non-injective.

2.3.3 Application

A permutation view might be used for one of the following tasks:

• to change the order of the elements of a collection; thus, it might serve as
a replacement of STL’s reverse algorithm.
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• to select certain elements out of the container, or to select a range of
elements from the container; note however that filter view or window view

might be more appropriate.

• to change the type of indices of a container, as shown in Figure 2.4.

30 1

876

542

9 1110

0 1

76

5432

8 109 11

0 1 765432 8 109 11

Figure 2.4. Permutation view: the re-indexing scheme might as
well change the type of the index.

2.4 Filter view

2.4.1 Overview

A filter view is a view which is capable to select certain elements out of the
given container. Given a predicate operating on the elements of the underly-
ing container, i.e. a unary function which has the element type as argument
type and returns a (type convertible to) bool, a filter view presents only those
elements of the collection for which the predicate is true.

2.4.2 Description

In a strict sense, a filter view is just a specialization of permutation view, that
is, the same functionality could also be achieved using a permutation view of
the collection together with the set of indices of elements fulfilling the predicate.

Therefore, everything that we mentioned in the previous section is also true for
a filter view:

• A filter view does affect the structure of a container, not the contents.

• A filter view allows both read and write access to those elements which
fulfil the predicate. Be aware, however, of the strange situation when to
an element of the filter view another value is assigned which does not fulfil
the predicate.
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Figure 2.5. Filter view: only elements of a certain kind are shown.

Note that functions empty() and size () of filter view require to step through the
whole underlying collection anyway, so both are linear in the container’s size.

2.4.3 Application

• Use a filter view if you want to select certain elements of a container,
depending on a predicate

• The use of a filter view might serve to replace several “ ... if ” algorithms
such as find if , count if , and replace if .

2.5 Window view

2.5.1 Overview

A window view is a rather simple class intended to select a window, i.e. a range
of the form [b,e) (where b and e are iterators) out of the underlying container,
with the possibility to rotate the window through the container.

2.5.2 Description

Note that it is not necessary for the range to be valid range in the sense that
is had to fulfil the condition that b is “less than” e, or e is reachable from b.
If necessary, the selected range is “wrapped around”, that means that iteration
restarts at the beginning of the container if it went past the end.

Figure 2.6. Window view: select a range out of a container.
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For random access containers, it is also possible to specify a range in the form
of [ i , j), where i and j are the indices of the first and one-past-the-end elements,
respectively.

Some additional methods allow to rotate the window through the container. If
you don’t need that functionality at all, consider using the simpler range view

(see Section 2.7) instead.

This view might be seen as another specialization of permutation view, therefore
it does affect the structure of a container, not the contents, and it is both read-
and writable.

2.5.3 Application

Use window view

• to select a sub-range out of a container

• to implement algorithms which operate on a certain neighbourhood of the
current element – compare neighbour view.

• to enable iteration past-the-end of the collection

2.6 Function view

2.6.1 Overview

A function view presents the view of a container where the elements of the
container are generated by a function; iteration runs over a user-defined range.

2.6.2 Description

Up to now, we have several times stressed that a view is a proxy to a collection of
elements (even if this is another view); that a view owns, or wraps, its underlying
container and presents its elements in some modified way.

As always, there are exceptions to the rule: there are views which do not wrap
any existing container; instead, they create a container-like structure “on the
fly”.

Function view is such a structure: instead of an underlying container, you have
to provide a generating function and a range to enumerate the arguments of the
generating function.

2.6.3 Application

A function view is appropriate

• to obtain a view of a container where elements are generated by a function

• to use instead of the generate algorithm of STL
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f(•)

f(0) f(2)f(1) f(3)

Figure 2.7. Function view: present a container-like view by means
of a generating function.

2.7 Range view

2.7.1 Overview

Taking two iterators, a range view presents a container-like view of all elements
between these two iterators.

2.7.2 Description

The other view class which does not require an underlying container is range
view: two iterators at the begin and end are taken to mimic a collection which
contains all the elements between first (included) and last (excluded) element.

...
Figure 2.8. Range view: present a view of elements between the
first and one-past-the-end iterators.

2.7.3 Application

• to avoid the need to explicitly construct and fill a container

• to create a view using some adapted iterator, for instance a counting iterator .

• to select a range of an existing container (instead of a window view)



2. A catalogue of views 26

2.8 Chain view

2.8.1 Overview

Given several containers with identical iterator types, a chain view concatenates
them all together. From the outside, the result looks like one single container.

2.8.2 Description

Many container implementations provide methods to append (or link, or con-
catenate) one container to the other. If one treats strings as character containers
– and the std :: string implementation of STL does so –, string concatenation can
also be considered as a chaining operation.

Assume, then, that you want to append a second container to the first one; then
append the third to the result of joining containers one and two; then comes
the forth, and so on. Of course, some of the containers might be empty. Others
might be quite large. Do you know whether your append() function does copy the
whole content of one container in order to append it to the other, and therefore
wastes much time?

Figure 2.9. Chain view: Link containers together.

A faster alternative might be a chain view: instead of actually appending con-
tainers and creating a new one, it just lets it appear as if they were appended1.

Of course, there is the modest price of memory that the view needs to do all
the book-keeping. A chain view, however, is not just intended to save the time
of appending operations. With the help of a window view, also insertion of one
container into another might be simulated. Additionally, a chain view is able
to reduce iteration complexity.

Assume that we have a large container, and that we want to iterate over certain
parts of this container only. We already learned one way to do that, namely by
using a permutation view. As it happens, our regions of interest are given in the
form [begin,end), and we want to select the interesting ranges with a window
view, as shown in Figure 2.10.

1 You’re probably getting used to this motif by now.
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One solution is to iterate over the interesting parts using two nested loops, like
this:

for ( every region of interest )
for ( every element in the region )
{

do something () ;
}

Figure 2.10. Select some ranges with a window view, then link
them together with a chain view.

There is yet another possibility, however: if one links all the selected regions
together using a chain view, these two loops are reduced to one; that is, we can
write

// build a chain view of a l l regions of interest
for ( every element in the view )
{

do something () ;
}

In other words, we have reduced two-dimensional iteration to one-dimensional
iteration. Whereas it might not be obvious right now why this is a benefit, we
will come back to this topic later, then considering iteration in image processing.

2.8.3 Application

• to link several containers together “on the fly”

• as a fast alternative to concatenation or insertion operations

• to reduce two-dimensional to one-dimensional iteration
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2.9 Zip view

2.9.1 Overview

A zip view takes a fixed number of collections, say, n, and ties them together in
the sense that it presents their elements as n-tuples.

2.9.2 Description

A rather common situation is to have two separate containers together with a
binary function (or a binary predicate) which should be applied to the pairs of
elements of container one and two. The trick is to provide a unary function
taking one pair which does just the same as the binary function taking two
single elements.

Figure 2.11. Zip view: present several containers as one container
of tuples.

In other words, before applying the function, we want to “zip” or “glue” or “tie”
together two collections. It should appear as if we had one collection containing
pairs instead of two collections containing single elements. That is exactly what
the zip view should do (at least temporarily).

The same game can be played, of course, with three containers and a ternary
function, giving triples of elements, or, in general, with n containers, an “n-ary”
function, and “n-tuples”. Whereas the details of the implementation of tuples
will be presented in one of the next reports, as a guiding principle we should
keep in mind that tuples should be a generalization of STL’s pair structure.

As simple and elementary this operation might seem, it is rises a bunch of
questions. When containers are zipped together, so are their elements and their
iterators. We have to take care that each operation performed on the zipped
container is a proper extension of basic container operations. For instance,
accessing the second element of a zip view of three containers means to access the
second element of the first, of the second, and of the third container, respectively.
Incrementing an iterator means incrementing iterators pointing into the first,
into the second, and into the third collection, respectively – and so on: each
operation on the zip view is an “element-wise” application of the underlying
basic operation.



2. A catalogue of views 29

Another question concerns the situation if, for instance, the first container is
empty and the second is not. Should we regard the resulting container as being
empty?

2.9.3 Application

• to apply a binary, ternary, or n-ary function to a number of collections

• to group elements of different collections into tuples

2.10 Neighbour view

2.10.1 Overview

A neighbour view ties together several elements (the “neighbourhood”) out of
one container into a tuple.

2.10.2 Description

Assume our task is to compute the moving average of the given container;
alas, you’ve got the transform view at hand, but averaging is certainly a function
depending on more than just the current element.

Moving averages, and other “local” algorithms, depend on what we call a neigh-
bourhood around the current element; that is, its size (the number of elements)
and the position of each element relative to the current one are fixed.

Neighbour view does group the elements of a neighbourhood into a tuple. Again,
a fixed number of elements is collected together into a tuple; but this times,
elements are all out of the same container.

...
Figure 2.12. Neighbour view: tie together elements of a neigh-
bourhood into a tuple.

2.10.3 Application

• to implement algorithms which rely on a neighbourhood around the cur-
rent element



3. IMPLEMENTATION ISSUES

If debugging is the process of tak-
ing bugs out, then programming
must surely be the process of
putting them in.

- John Topley1

3.1 A view’s interface

Remember that views are intended to be a drop-in replacement for STL con-
tainer classes. Consequently, a view’s interface should be as close as possible
to the interface of such a STL container. The question is only – which sort
of container? There are Random Access Containers, Back Insertion Sequences,
and Unique Sorted Associative Containers, among others.

The short answer is that we will try to provide the interface of a Random
Access Container – with a few exceptions, of course –, that we might provide
some functionality of Back Insertion Sequences, and that we will deal with
some workarounds imposed by STL’s map. Of course, there are no rules without
exceptions, and for some view types this simple answer is not applicable at all2.

Following closely [Jos99, section 6.10], lets see which parts constitute a con-
tainers’ interface. In general, we will skip any functionality which deals with
modifying the container (but there will be methods to modify the containers’
elements).

1. Type Definitions: a number of type definitions are sprinkled throughout
the interface code, and it pays off to provide them in a systematic way. In
fact, these typedefs deserve a section on their own – see Section 3.2.

2. Create, Copy, and Destroy Operations: in other words, constructors, copy
constructor, and destructors.

3. Non modifying Operations:

• Size Operations: size () and empty(), but not max size().
1 Quote taken from the thread “Where do bugs come from?” of the Joel on Software

discussion forum (http://discuss.fogcreek.com/joelonsoftware/).
2 These considerations also led me to the believe that there is no basic view class from

which all other view classes can be derived. Views are just too different; defining a base class
might be possible, but I believe this will not have any advantages at all.

http://discuss.fogcreek.com/joelonsoftware/
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• Capacity Operations: None. Views should not deal with the storage
of the container, thus do not expect capacity () and reserve ().

• Comparison operations: operator==, which implicitly defines operator=!
as well. operator< to compare lexicographically; the operations >,
<=, and >= are all implemented in terms of <.

4. Assignments: operator= and swap().

5. Direct Element Access: operator[ index ] and its more pedantic version,
function at( index ). The exact type of index will be subject to discussion
in Section 3.2. Since front () and back() are useful, yet easy to implement,
they will most often be part of a view’s interface as well.

6. Operations to Generate Iterators: such as begin() and end(). In the case of
views, the name “operations to generate iterators” is definitely justified.
Views often will actually have to compute begin() and end(), whereas STL
containers do usually just pass a stored pointer. I will not care about
rbegin() and rend().

7. Inserting and Removing Elements: none at all. A view is a adapter to
an existing container, and it won’t modify its underlying container, so it
should allow no modifying functions. No view will provide things such as
insert (), erase (), clear (), and the like.

As a rule of thumb, a view is implemented in terms of its related smart iterator,
if possible. A transform view wraps a transform iterator and adds a container-like
interface; a filter view transfers all necessary computations to its filter iterator;
and so on. Smart iterators also play a key role when defining all the necessary
types for a view, as shown in the next section.

3.2 Type computations

In order to implement a view, we have to provide – or compute – several types
which are related to the view itself, to its underlying container, or to any another
component (such as a function or predicate) which the view is composed of.

As always, we stick to our paradigm: we want a view to be as similar to a STL
container as possible. Each and any STL container already defines nine related
types; as a consequence, each and any view has to provide them as well:

1. value type : The type of the elements stored in the view.

2,3. iterator and const iterator : The types which are used to iterate through
the view’s elements.

4,5. reference and const reference : Types which behave as a reference to the
view’s elements.
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6,7. pointer and const pointer 3: Types which behave as a pointer to the view’s
elements.

8. difference type : A signed integral type; it is the type of the distance be-
tween two iterators.

9. size type : A unsigned integral type; represents the number of elements
stored in the view.

All these types are required to implement an STL container and its methods.
For instance, a random access container provides access to its elements via the
operator [] method, which looks as follows:

const reference operator [ ] ( convertible to size type ) const ;

With those nine types, we are almost done. There are just two exceptions.
First, all associative containers associate their elements with keys, and hence
have to define another type:

• key type: The type of keys associated with the value type.

Pair associative containers introduce yet one further type. This kind of container
stores key-data pairs; thus, not only the key’s type, but also the data’s type has
to be specified:

• data type: The type of the data associated with the value type.

In this case, value type is forced to be pair<const key type, data type>. This al-
ready introduces a nasty inconvenience. STL’s implementation of a sorted,
unique pair associative container, class map< Key, Data >, also provides an operator []

– but it does it its own way:

data type& operator [ ] ( const key type& k )

How can we provide one definition of operator [] without knowing in advance
which of the two versions the underlying container will provide? We can’t do so
in a completely straightforward manner. My proposal here is to introduce two
further types for any view:

10. index type: the argument type of operator []

11. data type: the result type of operator []

Eleven type definitions all in all! Where do all these types come from? The
short answer is: compute them whenever possible.

3 There has been a lively discussion on comp.lang.c++.moderated on whether const pointer
is defined or not (March 2003). In short, the standard does not list const pointer as part
of the container requirements. However, it is implicitly introduced through their allocator
template argument.

file:comp.lang.c++.moderated
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First and fore-most, each view defines its own smart iterator type, which in turn
is obtained by applying some iterator adaptor. Using Boost’s iterator adaptor

library, we are in luck: many types are already defined in there, and all a view
has to do is to extract them out.

Other types of the view are usually dependent on its underlying container.
Sometimes, they are just identical to the containers’ types; sometimes not. In
general,

• size type , index type, and data type are derived from the views’ container
type, whereas

• all other types are extracted from the views’ iterator type.

We want to extract the types without fiddling around with the view’s code too
much. This can be achieved with a technique called traits. As subsumed in
[Mye95], a traits class “provides a convenient way to associate related types,
values, and functions with a template parameter type” – and that is exactly
what we need.

So, all we have to do is to add two (private) traits type definitions – one for
iterator types, and one for container types – to our my view implementation, like
this:

typedef tra i ts<
my iterator generator<several types>::type ,
my const iterator generator<several types>::type ,

> i t e r t r a i t s ;

These are then used to actually provide all types “in public”:

typedef typename i t e r t r a i t s : : value type value type ;
typedef typename i t e r t r a i t s : : i terator i terator ;
// . . .
typedef typename cont traits : : size type size type ;
// . . .

So, the “surface” of a general view class is fixed now; lets have a look at the
innards.

3.3 Ownership

3.3.1 Motivation

Most views contain one (or more) underlying STL containers. However, what
does “containing” mean in this context? A naive interpretation might be that
“contains a STL container” is the same as “has a STL container as a (private)
member”. This leads to a first implementation skeleton of a view, which looks
like Listing 3.1.
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template<class ContainerT> class my view
{

// The constructor .
my view( const ContainerT& theData) : data( theData ) {}

// The copy constructor .
my view( const my view& other ) : data( other . data ) {}

// . . .
private :

ContainerT data ; // View contains i t s data as private member.
};

Listing 3.1. Code skeleton of naive view implementation.

This is simple and does what it is expected to do; at the price that construction,
copy construction, and assignment all require a deep copy of the container, which
might be quite time-consuming. To illustrate this point, let us consider the case
of “viewing a view”, as shown in Listing 3.2.

1any container u; // any container
2
3my view<any container> a( u ) ; // view of container
4my view< my view<any container> > b( a ) ; // view of view of container

Listing 3.2. Construct a view and a view of a view.

It is important to note that a and b are not of the same type; a is a view of an
ordinary STL container, whereas b is a view of a view. Hence, in both cases the
ordinary constructor is called.

More precisely: if view a is constructed in line 3, its constructor is called:

my view( const ContainerT& theData) : data( theData ) {}

This does call the copy constructor of the STL container, which does usually a
deep copy of the containers’ contents.

The template argument ContainerT of my view is instantiated to my view<any container>

in line 4. Hence, b’s member data is of exactly that type. When we call b( a )

in line 4, the ordinary constructor of type my view< my view<any container> > is
called; this, in turn, calls the copy constructor of my view<any container> – and
that does again copy the container. Finally, we end up with the situation of
Figure 3.1: each view contains its own copy of the original container, so all in
all three identical container – the original one plus two copies – lie somewhere
in memory.

3.3.2 Three kinds of ownership

How can we do better? The most radical solution in terms of efficiency – but
also in the sense that it is the unsafest one – would be a view that just stores a
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View Copy of View

Container Copy of Container Copy of Copy of Container

View of view

Figure 3.1. View and view of a view in case of unique ownership.

pointer to the underlying container instead of the container itself. Listing 3.3
shows a naive approach to “optimize” things.

template<class ContainerT> class my view
{

// The constructor .
my view( const Container& theData ) : ptr ( &theData ) {}

// . . .
private :

ContainerT∗ ptr ;
};

Listing 3.3. Code skeleton of another naive view implementation.

Essentially, here we just bend pointers to other locations and need not worry
about anything being copied. If we did again construct a view of a view as in
Listing 3.2, just the original container (plus two pointers to it) would be in
memory. This is illustrated in Figure 3.2.

Container

View

View of view

Figure 3.2. View and view of a view in case of external ownership.

We need to worry about others issues, however. For instance, assume that
somebody writes a function returning a view of a container, say, a vector of int’s
(Listing 3.4).
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my view< vector<int> > make a view()
{

vector<int> a ; // Local w. r . t . function make a view() .

// . . .
return my view< vector<int> >( a ) ;

}

Listing 3.4. Good-bye, data!

Whoops! We just created a view containing a dangling reference, that is, a
view that references a vector which no longer existing. We traded efficiency for
security, which is a bad deal in this case.

One further trial – perhaps the best solution is a compromise between security
and performance? Such a compromise – a solution somewhere in between the
two previous ones – is offered by using the shared ptr class of Boost (Listing 3.5).

template<class ContainerT> class my view
{

// The constructor .
my view( const ContainerT& theData ) : ptr ( new ContainerT(theData) ) {}

// The copy constructor .
my view( const my view& other ) : ptr ( other . ptr ) {}

// . . .
private :

boost : : shared ptr<ContainerT> ptr ;
};

Listing 3.5. Code skeleton of a view implementation with shared
pointers.

The compromise is that upon construction of a view – for instance, when we
create a in line 3 of Listing 3.2 – a copy of the original container has to be
made. However, if then at line 4 b is constructed, we benefit from the copy
constructor of shared ptr . It does not copy anything, but just incremented its
usage counter, as shown in Figure 3.3.

All in all, we came up with three different models how a view can “contain” its
underlying STL container:

a) unique: The view contains its own copy of the underlying container. Slow
and safe.

b) shared: The view contains its own copy of the underlying container in the
form of a reference-counted pointer. Faster and still safe.

c) external: The view has just a pointer which points to the original con-
tainer. Fast, but unsafe.
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View

Container Copy of Container

View of view

use_count() = 2

Copy of View

Figure 3.3. View and view of a view in case of shared ownership.

3.3.3 Ownership as a policy

Each of the three naive implementations presented above would force a user
of the view library to use one specific ownership model. You do not want the
ownership model to be hard-coded into the view code, do you? Instead, we want
to allow each view type to be configured with a ownership policy.

In order to do that, it is necessary that not only the container type, but also
the ownership policy is passed as a template parameter to the view class. A
quick hack using a template (the container type) and a template parameter (the
ownership policy) is

template< class ContainerT ,
class OwnershipP = ownership : : shared<ContainerT> >

class my view
{

// . . .
private :

OwnershipP data ; // Delegates to ownership .
};

Great. Now you can write things like

my view< vector<int>, ownership : : unique< vector<int> > a ;

and you might soon get tired of this, because it not only requires a lot of typing,
but it also allows you to write things like

my view< vector<int>, ownership : : unique< l i s t<double> > a ;

which will lead to complete confusion. Besides, this solution does not scale well
if we consider views which take more than one container as their argument.

Of course, it might be possible to skip the idea of ownership policy at all,
or, perhaps, to construct some ingenious solution involving named template
parameters. There is a simpler solution, however.

The important observation is that an ownership policy does not exist on its own;
it is necessary to put together what belongs together. If only we could write
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my view< pair<ContainerT , OwnershipP> >

or

my view< OwnershipP<ContainerT> >

or something similar! All that is needed is a mechanism to extract both com-
ponents, ownership policy and container type, back out of the template expres-
sions. Is there such a possibility? Yes, there is, at least if your compiler supports
partial template specialization.

The general case, as shown in Listing 3.6, is necessary to define the default
policy in case that the user does not explicitly specify it.

template<class T> struct wrap
{

typedef shared<T> type ; // Ownership i s ”shared” by default
typedef T domain;

};

Listing 3.6. The ownership wrapper default case ...

The three template specializations then are used if one of the three possibilities
is stated explicitly.

template<class T> struct wrap< unique<T> >
{

typedef unique<T> type ;
typedef T domain;

};

template<class T> struct wrap< shared<T> >
{

typedef shared<T> type ;
typedef T domain;

};

template<class T> struct wrap< external<T> >
{

typedef external<T> type ;
typedef T domain;

};

Listing 3.7. ... and its three specializations.

Now you are able to write

my view< ownership : : unique< vector<int> > a ;

which is a little bit shorter and much less error prone. Voil! Instead of two
template parameters, there remains only one (containing both). The view will
extract the necessary types out of the ownership wrapper.
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template<class ContainerT> class my view
{

typedef ownership : :wrap<ContainerT>::domain domain type ;

my view( const domain type& theData ) : data( theData ) { }

// . . .
private :

ownership : :wrap<ContainerT>::type data ;
};

Listing 3.8. Extraction of necessary types out of the wrapper.

3.4 Some other thoughts

3.4.1 Be aware of what “iterator equality” means

Historically, the iterators of C++ “are a generalization of pointers” [STL]. The
syntax and semantics of working with iterators – incrementing, dereferencing,
(pointer) arithmetic and so on – closely resembles plain old C pointer handling.

Back in the old days, it was quite clear what “equality” meant: two pointers
were considered equal if they pointed to the same location in memory. Naturally,
dereferencing two “equal” pointers in the above sense would yield the same
values. In short, the following rules were valid:

• Two pointers are equal, i.e. p1 == p2, if and only if they point to the same
location.

• Both conditions above imply that the dereferenced values are equal, i.e.
∗p1 == ∗p2.

Since then, things have gotten more complicated than that.

First of all, if two iterators point to the same location, it is no longer guaran-
teed that dereferencing them results in the same return value. Just consider
two transform iterators which iterate over the same range, but have different
transform functions, as shown in Figure 3.4.

Should we still regard these two iterators as equal? Definitely not! So from the
fact that two iterators point to the same location we can no longer conclude
that they are equal. Just the converse does still hold: If two iterators do not
point to the same location, they should not regarded as being equal.

• iter1 == iter2 implies that iter1 and iter2 point to the same location.

• If iter1 and iter2 point to the same location, then this does neither imply
that they are equal, nor does it mean that the dereferenced values are
equal, i.e. that ∗ iter1 == ∗iter2.
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... ... ... ...

Transform Iterator
x -> g(x)

f(   ) g(   )

Transform Iterator
x -> f(x)

Figure 3.4. Two iterators point to the same location, yet yield a
different value.

3.4.2 Be aware, part 2: cyclic iterators

Another example concerns a cyclic iterator, which comes in handy to implement
a window view. This iterator is intended to re-start iteration at the beginning of
a container if it went past-the-end – or to jump back to the last element if it has
been at the beginning and was decremented. Figure 3.5 shows the situation
we have in mind.

beginend
data.begin() data.end()

Figure 3.5. Cyclic iterator: allows past-the-end iteration over a
container.

Implementing a cyclic iterator is not so difficult. All the iterator has to remem-
ber are its limits, i.e. the containers’ begin and end; plus, a counter how often
it went “past the end”.

Why is this important? Consider a situation as in Figure 3.6, written in code
as

cyc l i c i te rator i t e r ;
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for ( i t e r = begin ; i t e r != end; ++i te r )
// use ∗ i t e r

We want to iterate over all elements of a container; however, for some strange
reason, we want to start at element number 8 (represented by iterator begin),
proceed to the end of the container, jump back to the first element, and continue
until we reach element 7 (iterator end).

data.begin() data.end()
data.begin() data.end()

past_the_end_N = 1

end

data.begin() data.end()

past_the_end_N = 0

begin

Figure 3.6. Beginning and end of a full cycle.

So, the begin iterator points to element number 8; and, due to STL’s convention
that “end” always means “one past the last”, iterator end also does point to
element number 8! However, we must not regard them as equal, otherwise the
test iter = end! will stop the iteration immediately.

Here we have the odd situation that two iterators point to the same location,
yield the same value when dereferenced, and yet are considered to be not equal !
We have to conclude:

• Even if two iterators point to the same location and yield the same value
upon dereferencing, they are not necessarily equal.



4. TUPLES

I would rather write programs to
help me write programs than write
programs.

-Dick Sites1

4.1 State of the art

The C++ Standard Template Library [STL] provides (among many other fea-
tures) the pair<T1,T2> construct – a pair of two data elements of types T1 and
T2, respectively. Its only members are these two data elements, called first and
second. Construction out of two elements t1 and t2, as well as empty and copy
constructors; a make pair(t1,t2) function for convenience; assignment, equality
and ‘less than’ operators, the later using lexicographic comparison: that is all.
This type is merely intended to group two elements together, and, consequently,
lacks any further functionality.

Assume, then, that we want to group more than two (or less than two, or
precisely two) elements – in short, any number of, say, n elements – together:
that is what we call an n-tuple. In other words, a tuple is a collection of an
arbitrary but fixed number of elements, each being of arbitrary but fixed type.
Here, “fixed” means “known at compile time”.

If size and type were just arbitrary, but not fixed, the means of implementing
tuples would be polymorphic types and dynamic lists. For instance, in Java one
might use a Vector of elements of type Object to do the job. As flexible as this
seems, any type information is lost.

However, since everything really is “fixed at compile time”, it is reasonable to
let the compiler know it. To do this, the C++ language offers static concepts
such as templates. The advantage of this approach is strict type checking, as
well as a possible performance improvement.

4.1.1 Boost’s tuple implementation

The Boost collection of libraries already contains a tuple implementation written
by Jaakko Järvi (see also [Jär99b, Jär99a]). In Boost.Tuple, tuples are based
on type or “cons” lists. A type such as

1 Dick Sites, Proving that Computer Programs Terminate Cleanly, Ph.D. thesis, Stanford
University, 1974. Quote taken from [CE00, p. 332].
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tuple<int ,double , foo>

inherits from

cons<int , cons<double , cons<foo , null type> > >

This code snippet looks very much like a LISP list, with the difference that the
lists’ elements are types. null type is an empty type which marks the end of the
list.

This structure gives rise to a recursive, “LISP-like” style of programming. For
instance, if one likes to retrieve the Nth element out of the tuple, this is done
recursively with the help of class get class . Listing 4.1 shows the general case
for N being not equal to zero. The recursion stops when N gets zero. In that
case, the specialization of get class is taken, as shown in Listing 4.2.

template< int N >
struct get class {

template<class RET, class HT, class TT >
inl ine static RET get(const cons<HT, TT>& t)
{

return get class<N−1>::BOOSTNESTEDTEMPLATE get<RET>(t . t a i l ) ;
}
// . . .

};

Listing 4.1. To access an element, go down step by step ...

template<>
struct get class<0> {

template<class RET, class HT, class TT>
inl ine static RET get(const cons<HT, TT>& t)
{

return t .head ;
}
// . . .

};

Listing 4.2. ... until you reach the end. Taken from Boost 1.29.0

All these nested statements are compile-time statements. This means that they
are resolved at compile-time and are expected to add no run-time overhead (but
perhaps compile-time overhead) to the code. For further details, see [Jär99b].

4.1.2 Basic tuple requirements

The intention of this chapter is to present an alternative tuple implementation.
Before going into the details, it is reasonable to state which functionality any
tuple library should provide. What follows is some sort of a “wish list” – wishes
which will become true in a short time –, plus (pseudo-)code snippets:
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1. Tuple construction: First and fore-most, there has to be some mechanism
to create tuples from given data. One can think of several different kinds
of construction:

(a) Explicit construction:

tuple<int ,double , foo> u( 42 ,3.14 , foo("bar") ) ;

(b) Copy construction:

tuple<long , float , foo> w( u ) ;

(c) “Head” plus “tail” construction:

tuple<double , foo> y( 3.14 , foo("bar") ) ; // the t a i l
tuple<int ,double , foo> z( 42,y ) ; // head + ta i l

2. Element access: Certainly we also want methods to get the data back out
from the tuple. For a tuple of n elements, we need functions get0 up to
getk, k=n−1. These functions should allow both read and write access
whenever possible; if not possible – for instance, in the case of a const

type – it should allow read access only, and issue a compiler error if one
tries to write to it.

(a) Access via member function:

int i = u. get0 () ;
u. get1() = 2.78;

(b) Access via global function:

double d = get1(u) ;
get2(u) .doo("ogg") ; // ca l l s foo method

(c) “Head” plus “tail” access:

double pi = u. t a i l ( ) .head() ;
++u.head() ;

3. Assignment and swapping: We want to assign and swap tuples in the ex-
pected way. Assignment, as well as copy construction, should also perform
some kind of type cast, as in

tuple<int ,double> u( 42,3.14 ) ;
tuple<long , float> v ;
v = u; // ok , cast types

4. make tuple and tie : For convenience, we want two helper functions to
simplify construction of tuples and extracting data back out into individual
variables:

tuple<int ,double , foo> u = make tuple( 42 ,3.14 , foo("bar") ) ;

int i ; double d; foo f ;
t i e ( i , ignore , f ) = u;

// now i == 42 and f == foo(”bar”).
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5. Relational operators: We need to test tuples for equality and inequality.
Additionally, testing for less than etc. w.r.t. lexicographical ordering is
useful sometimes:

tuple<int ,double , foo> u( 42 ,2.78 , foo("bar") ) ;
tuple<long , float , foo> w( 42 ,3.14 , foo("bar") ) ;

i f ( u == w ) // element−wise equality
// do something

i f ( u < w ) // lexicographical ordering
// do something di f ferent

6. Helpers for functions: Say there is a function that expects three separate
arguments; however, we would like to pass one 3-tuple to it. For such
situations, a helper function which maps one calling form to the other
comes in handy:

bool i s fooable ( int ,double , foo ) ; // a function taking three args

tuple<int ,double , foo> u( 42 ,2.78 , foo("bar") ) ; // the argument

pointer to function<bool , int ,double , foo> fooable ( is fooable ) ;

i f ( fooable (u) ) // ca l l s is fooable ( get0(u) ,get1(u) ,get2(u) )

Of course, as always, everything should be extremely fast, and nicely docu-
mented, and highly portable, and ... Just wait. There is yet another wish.

4.1.3 Additional functionality

Boost.Tuple does provide (almost) all of the above items, so why rewrite it? The
motivation to reimplement the tuple type was that I wanted to group containers
and iterators together in a tuple in the same manner as “plain old data types”.
This is necessary, for instance, to generalize the implementation of a zip view

[PW00].

The intended meaning of a container tuple type is straight-forward: A tuple of,
say, three containers (always in the sense of STL containers such as std :: vector,
std :: list etc.) containing ints, doubles,and foos, respectively, should be “the
same” as a container which contains tuple<int,double,foo>s as elements. Of
course, we can not expect a container tuple type to provide the same rich variety
of methods as STL containers in general do. Especially, it would be difficult to
implement methods to insert tuples of elements into or remove tuples of elements
out of a tuple of containers. Functionality that can be implemented anyway
(often in a straight-forward way) include the functions empty() and size () and
the iterator mechanism associated to a standard container – that is, methods
begin() and end().

That, in turn, requires a tuple of iterators together with its methods such as
increment, decrement, and dereference. Listing 4.3 shows a sketch of the in-
tended usage of container and iterator tuples. Another nice feature would be
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vector<int> u; vector<double> v ; vector<foo> w;
// f i l l u , v , and w with data

typedef container tuple< vector<int>,vector<double>,vector<foo> >
my vectors ;

my vectors t ( u,v ,w ) ;
my vectors : : i terator i t ;

for ( i t = t . begin () ; i t != t .end() ; ++i t )
{

// (∗ i t ) i s of type tuple<int , double , foo>:
int i = get0( ∗ i t ) ;
i t−>get1() = 3.14 ∗ i ;

}

Listing 4.3. A tuple of containers appears as a container of tuples.

to overload the meaning of operator [] to allow access to the individual elements
of a tuple of containers. This is not always appropriate; when it is, however, it
makes sense to provide it. See Listing 4.4 for an example.

// u, v , and w as above
my vectors t ( u,v ,w ) ;

tuple<int , int , int> index( 1 ,4 ,3 ) ;
t [ index ] = make tuple( 42 ,3.14 , foo("bar") ) ;

Listing 4.4. Access via indexing is extended.

4.1.4 Tuples and beyond

Which brings us to the question: where to put all this methods, container
and iterator functionality? Consider Listing 4.5 – it is tempting to add these
“common” methods, such as increment, addition, minimum, and so on, to the
basic tuple type. They just occur so frequently, and it seems to be easy to
implement them.

Yet, I decided against stuffing too much functionality into the base tuple type.
Instead, the base idea is to keep the base type simple and enrich the derived
types with more functionality.

• The base type tuple provides all the basic functionality as listed in Sub-
section 4.1.2 – but nothing else.

• Derived types add more functionality; they may impose additional require-
ments to their elements’ types.

– container tuple : assumes that elements are STL containers
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tuple<int ,double> u( 42, 3.14 ) ;
tuple<long , float> v( 77, 2.78 ) ;

// element−wise addition
tuple<long ,double> w = u + v ; // gives ( 119, 5.92 )

// vector product
double p = u ∗ v ; // gives 42 ∗ 3.14 + 77 ∗ 2.78 = 345.94

// element−wise minimum
tuple<long ,double> m = min( u, v ) ; // gives ( 42, 2.78 )

// write to standard output
std : : cout << m;

Listing 4.5. Should we add all these functions?

– iterator tuple : assumes that elements are STL iterators
– math tuple: provides functionality for “math-like” tuples, i.e. opera-

tions such as addition, multiplication and the like.
– (to be continued)

4.2 A new approach

The approach taken here is in fact very, very simple. It closely resembles an
approach “as if written by hand”. Actually, we could take the (hand-written)
implementation of std :: pair<T1,T2> as a starting point.

As already pointed out, all type informations are already fixed at compile time.
Therefore static concepts are preferable: we will implement the tuple type(s)
by means of templates. Our starting point is a general tuple template which is
empty – it just serves as a placeholder.

Since we would like to have tuples for a various number of elements (remem-
ber: “arbitrary, but fixed”), we have to implement a structure for each N. So,
subsequent tuple structs are implemented as a template specialization from the
general placeholder. These ideas are outlined in Listing 4.6.

In fact, we can already draw some important conclusions from the structure
shown in Listing 4.6. In comparison to Boost.Tuple, the new approach as
presented here has the following characteristics:

1. Our tuples are flat, not nested. This is not a benefit per se; however, flat
structures might result in simpler, and therefore more efficient, code.

2. The code of Listing 4.6 requires partial template specialization. This
means that some compilers are not (yet) able to compile such tuples.

3. There are lots and lots of code to write. In some sense, our “brute-
force approach” lacks the elegance of tricky template meta-programming
as shown in Boost.Tuple.
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// The empty type .
struct null type {};

// The general tuple template . Just a placeholder to ‘ ‘ spec ia l ize from ’ ’ .
template< class T0 = null type , class T1 = null type , . . . >
struct tuple
{ };

// Template specia l izat ion for N = 2:
template< class T0 , class T1 >
struct tuple< T0 , T1 , null type , null type , null type , . . . >
{

T0 m0; T1 m1;
};

// Template specia l izat ion for N = 3:
template< class T0 , class T1 , class T2 >
struct tuple< T0 , T1 , T2 , null type , null type , . . . >
{

T0 m0; T1 m1; T2 m2;
};

// . . . and so on . . .

Listing 4.6. Code skeleton of hand-written tuple implementation.

The next step is to add some basic functionality such as constructors and get
methods. This can still be done in a straight-forward way, without too much
thinking. The general rule of thumb is to break down each method to its
element-wise components. As a bonus, we integrate automatic element-wise
type conversion into the copy constructor.

The code of Listing 4.7 will work fine until, for some reason, you start to
instantiate objects of type tuple<int&,double&>; in such a case, your favourite
compiler might tell you that it does not like references of references. As these
problems are already addressed in the Boost.Tuple library, I will not go into
details here.

4.2.1 Code generation

By now, it is obvious that the tuple code grows and grows; each modification
has to be written (and maintained thereafter) for each N-tuple. “Do it yourself”
might be tedious and error-prone – it pays off to remember the advice of the
beginning: instead of writing tuple code, write code that writes tuple code.

Although there are a couple of suitable scripting languages which are able to
generate code in a systematic manner, we will stay within the scope of the C
language. Indeed, each C compiler is able to generate code automatically: by
means of macros fed to the preprocessor.

Conventionally, the C preprocessor is seen as “relatively unsophisticated”[Str97],
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// Template specia l izat ion for N = 3:
template< class T0 , class T1 , class T2 >
struct tuple< T0 , T1 , T2 , null type , null type , . . . >
{

// Constructs tuple out of elements .
tuple ( T0 theM0 , T1 theM1 , T2 theM2 )

: m0(theM0) , m1(theM1) , m2(theM2)
{ }

// Copy constructor . Does element−wise type cast .
template< class S0 , class S1 , class S2 >
tuple ( const tuple< S0 , S1 , S2 >& rhs )

: m0( rhs .m0 ) , m1( rhs .m1 ) , m2( rhs .m2 )
{ }

const T0& get0() const { return m0; }
T0& get0() { return m0; }

// same for N = 1 ,2.

T0 m0; T1 m1; T2 m2;
};

Listing 4.7. Constructors and get-methods added to the skeleton.

and its use is regarded to be dangerous. Yet, the preprocessor is suitable to
generate repetitive code structures; with the help of the Boost.Preprocessor
library, we can even formulate a general tuple type macro. That’s what I would
like to call the “Tupple” library: tuples from the preprocessor.

For instance, assume that we want to “automatize” the generation of the tuple
members. That is, the code line

T0 m0; T1 m1; T2 m2; T3 m3; T4 m4;

(assuming N=5, of course) should be generated rather than written manually.

This turns out to be quite easy: all there is to do is to define a single macro

#define MEMBER(z ,k , ) T##k m##k;

Note that the macro operator “##” stands for string concatenation. That is,
a call to MEMBER(z,5, ) would expand to the text “T5 m5;”. The first and third
argument of the macro2 are ignored.

Given that, just include the proper header files of Boost.Preprocessor and start
compiling; the code snippet

BOOSTPPREPEAT(5 ,MEMBER, )

then generates the line we want.
2 All examples are done with Boost.Preprocessor library of Boost version 1.29.0, which was

a major revision. For instance, only since version 1.29.0 three macro parameters are required;
in former versions, it was sufficient to write #define MEMBER(k, ) T##k m##k;
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// define a reasonable number MAXN as maximum for template parameters

// Template specia l izat ion for N = 3:
template< enumerate “class Tk” for k = 0,1,2 >
struct tuple< enumerate “Tk” for k = 0,1,2

here comes a comma “,” if k is not zero
“null type” for (MAX N - k) times >

{
tuple ( enumerate “Tk theMk” for k = 0,1,2 )

: enumerate “mk(theMk)” for k = 0,1,2
{ }

// . . .

repeat “Tk mk;” for k = 0,1,2
};

Listing 4.8. Abstract structure of tuple template with N=3.

In principle, this can be extended to more complex expressions necessary for
tuple code generation. For instance, reconsider Listing 4.7; if we would like to
extract the underlying structure of the code in order to see how to generate it,
the result might look like Listing 4.8.

The only task left is to fill out this structure, that is, to give a meaning to
commands like “enumerate text for k=0,1,...,N”. Given the capabilities of the the
Boost.Preprocessor library, this occurs to be almost trivial. The only requisite
to do so is to define the necessary macros. As a result, we can define another
macro, say STRUCT TUPLE(k), which is capable of generating the source code of
struct tuple3 for each non-negative k. A call to STRUCT TUPLE(3) would then
produce the whole code of a tuple with three elements. Listing 4.9 has the
details.

The same code generating strategy applies to types which are derived from tuple,
such as container tuple and iterator tuple as described in Subsetion 4.1.4.

For instance, the increment operator

se l f type& operator++() {
++m0; ++m1; ++m2; ++m3; ++m4;
return ∗this ;

}

of an iterator tuple of size 5 can easily be generated by

#define INC(z ,k , ) ++m##k;
// . . .
se l f type& operator++() { BOOSTPPREPEAT(k ,INC, ) return ∗this ; }

– likewise, the empty() function of a container tuple , which I implemented as
3 Obviously, such a macro will be quite long – definitely longer than one line. Keep in mind

that the backslash character ‘\’ is used to adjoin subsequent lines in macro definitions.
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#define MAXN 10

#define NULLTYPES(z ,k , ) null type

#define CTORARG(z ,k , ) T##k theM##k
#define INITCTOR(z ,k , ) m##k(theM##k)
#define MEMBER(z ,k , ) T##k m##k;
// . . .

// Template specia l izat ion for a l l N.
#define STRUCTTUPLE(k) \
template<BOOSTPPENUMPARAMS(k , class T)> \
struct tuple< BOOSTPPENUMPARAMS(k ,T)} \

BOOSTPPCOMMAIF(k) \
BOOSTPPENUM( BOOSTPPSUB(MAXN,k) ,NULLTYPES, ) > \

{ \
tuple ( BOOSTPPENUM(k,CTORARG, ) ) \
: BOOSTPPENUM(k,INITCTOR, ) \
{ } \

\
BOOSTPPREPEAT(k ,MEMBER, ) \

};

STRUCTTUPLE(1) // generate code for N=1
STRUCTTUPLE(2) // generate code for N=2
STRUCTTUPLE(3) // generate code for N=3
// etc .

Listing 4.9. Abstract tuple template filled with macro definitions.

tuple< bool , bool , bool> empty() const {
return tuple< bool , bool , bool>( m0.empty() , m1.empty() , m2.empty() ) ;

}

is the result of yet another macro definition, namely of

#define NTIMES(z ,k , arg) arg
#define EMPTY(z ,k , ) m##k.empty()

TUPLE(k)<BOOSTPPENUM(k,NTIMES,bool)> empty() const { \
return TUPLE(k)<BOOSTPPENUM(k,NTIMES,bool)>( BOOSTPPENUM(k,EMPTY, ) ) ; \

}

Suffice it to say that with the of the Boost.Preprocessor library, we can write
one macro to generate all the tuple code, one macro for tuples of iterators, and
so on; in fact, a very limited subset of Boost.Preprocessor (mainly enumeration
and repetition) is necessary.

4.2.2 Sequence of use

In general, it is possible to use the tuple generating macro code in two different
ways:
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• Include the file containing the macro definitions. The code of the tuple
structure will be generated each time the header file is included.

• Let the macro definition generate a separate file. Include only this file
which contains the generated code (but no macros any more).

As the generated code grows longer and longer, the second possibility gets more
preferable. In the last subsection I claimed that the STRUCT TUPLE(k) macro
as defined in Listing 4.9 is capable of generating the complete tuple type code
for all non-negative k. What is actually generated is this:

template< class T0 , class T1 , class T2> struct tuple < T0 , T1 , T2 , null type , null type , null type , null type ,

– everything in one line. The preprocessor does not care much about indent and
a nice layout. If we would like to obtain a separate tuple library file, we have
yet to care about formatting the generated text along the following rules:

• Increase the indent after an opening curly bracket “{”, and decrease it
after a closing one “}”.

• Place line breaks at proper places – for instance, after “ ;”, and after curly
brackets.

• Take care that each preprocessor directive such as #include <somefile>

appears on a new line.



5. EXAMPLES

In theory there is no difference
between theory and practice. In
practice there is.

- Yogi Berra

5.1 String parsing

As a first example, lets look at the processing of strings (which can be “viewed”
as a container of characters). Suppose we want to split up a string such as

One sentence with five words.

into its five single words One, sentence, with, five, and words – the later
without the period. Again, a picture can help to understand our goal – see
Figure 5.1. Note that this picture in some sense looks like the “inverse” of the
chain view picture.

 ,  ,

Figure 5.1. Parsing does not modify the containers’ contents, but
modifies the structure.

The first trial I undertook some time ago looked like Listing 5.1.

Wait, what’s happening here? We use the transform view to iterate over the
string; each time the transform views’ function returns true – which means that
the iterator points to a blank in between words – we send the string formed
from between b and e to the standard output. That’s not very elegant, and in
fact we can go much further than that.

To do so, lets write down what parsing means. Given a string, which we treat
as a container of characters, here’s the strategy:
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str ing s( "One sentence with five words." ) ;

typedef transform view< string , boost : : function1<bool ,char> >
TrueIffBlankView ;

TrueIffBlankView view( s , bind2nd( equal to<char>(), ’ ’ ) ) ;

TrueIffBlankView : : const iterator b = view . begin () ;
TrueIffBlankView : : const iterator e ;

while( ( e = find ( b, view .end() , true ) ) != view .end() )
{

cout << str ing ( s . begin() + (b−view . begin ()) ,
s . begin() + (e−view . begin ()) ) << endl ;

b = e + 1;
}

Listing 5.1. Writes the five words to the screen.

1. Place breaking marks at certain locations – for instance, blanks, commas,
periods, etc. That’s what a filter view can do: given a “is a character in-
dicating a break”-predicate, it only returns (pointers to) those characters.

2. Form new strings which hold exactly the text between two breaking marks.
That might be the task of a transform view which is initialized with some
string generating function. Since a transform view can only hold a unary
function, we have to add another view:

3. Pair together two consecutive (pointers to) breaking marks. Each such
pair describes the range of a string, stretching from the pairs’ first member
up to the pairs’ second member. Pairing together might be done with the
help of a neighbour view.

Summarizing, we have got to deal with three different views: First, a filter view
filters out only those characters which indicate a breaking location. Second, a
neighbour view pairs together consecutive such locations together into ranges.
Third, a transform view takes such ranges and creates string out of them.

struct isBreakingCharacter
: public std : : unary function< char , bool >

{
bool operator()( char ch ) const
{

return( isalnum( ch ) == 0 );
}

};

Listing 5.2. Break if character is not alpha-numeric.

Assuming that we have two functions (or rather function objects), namely,
isBreakingCharacter () which tells us whether we should break at a certain charac-
ter or not (compare Listing 5.2, and constructString () which constructs strings
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out of ranges, we can define the exact view types. Note that Listing 5.3 shows
very clearly how one view is stacked upon the other.

typedef f i l ter v iew< string , isBreakingCharacter >
OnlyCharsAtBreakView;

typedef neighbour view< OnlyCharsAtBreakView , 2 >
PairTogetherView ;

typedef transform view< PairTogetherView , constructString >
ConstructStringsView ;

Listing 5.3. Definition of the three views.

Using these type definitions, writing the working code is relatively straight-
forward. Unfortunately, there’s just one further detail which has to be observed:
the first breaking character appears somewhere after the beginning of the string.
In our case, the first blank is after the word “One”. Consequently, the first pair
of consecutive characters subsumes the blank after One and that after sentence;
which means that the first constructed string is “sentence” – we missed the
first word! As a workaround, lets insert a blank at the front of the sentence;
finally, we can parse the string as shown in Listing 5.4.

std : : str ing s( "One sentence with five words." ) ;

OnlyCharsAtBreakView onlyAtBreak( s ) ;

// HACK Inserts break point at front of s to get the f i r s t word as well :
onlyAtBreak .domain() . insert ( (std : : str ing : : size type )0 , 1 , ’ ’ ) ;

PairTogetherView : : difference type consecutivePairs ( 0 , 1 ) ;
PairTogetherView pairTogether( onlyAtBreak , consecutivePairs ) ;

ConstructStringsView result ( pairTogether ) ;

Listing 5.4. The final code.

It is noteworthy – and a little bit disappointing – that even this relatively
simple task requires not only to stack three different views upon each other, but
also some non-intuitive hacks. Partly, this is so because views only allow local
operations; for algorithms which require non-local data – and parsing is such an
operation –, we have to apply certain tricks.

On the other hand, this examples also demonstrates the “pros” of using views:
for instance, up to the last line, where the final view result is constructed, we
did just that: constructing views. We did not have any other computations due
to lazy evaluation.

Out of curiosity, I’d like to advance this example a little bit further. Sometimes
it is desirable to keep a certain part of the text “as is” although it contains
breaking characters. A simple possibility to tell the algorithm that it should
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left this part unchanged is to surround this part with so called escape characters
– typically, quotes, brackets and the like. Suppose we have got

A sentence "for demonstration purposes only" with nine words.

This sentence should be split up into six parts: namely, A, and sentence; the
fragment "for demonstration purposes only" should be kept as a whole;
then, with, nine, and words.

One solution might be to extend function isBreakingCharacter () as shown in List-
ing 5.5: an internal state insideQuotes is added to the function object which keeps
records of whether it is currently inside or outside a matching pair of quotes.

One possible drawback of this straight-forward implementation is that it as-
sumes that the string is parsed from left to right. This is a general danger when
working with functions that have an internal state. Note however that a filter
iterator already is forward only, so this assumption does not impose any further
restriction.

struct isBreakingCharacter
: public std : : unary function< char , bool >

{
isBreakingCharacter ()

: insideQuotes( false )
{ }

bool operator()( char ch )
{

i f ( ch == ’\"’ )
{

insideQuotes = ! insideQuotes ;
return false ;

}
else

return( ! insideQuotes && ( isalnum( ch ) == 0 ) ) ;
}

private :
bool insideQuotes ;

};

Listing 5.5. Breaks at non-alphanumeric characters outside quotes.

5.2 Signal processing

5.2.1 Sampling

To be able to apply signal processing algorithms, we first need a discrete signal.
Hence, the starting example to demonstrate the application of views in the
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Figure 5.2. Continuous signal is sampled to obtain a discrete one.

signal processing domain is to down-sample a continuous signal into a discrete
one.

Suppose we have a formula which describes the given signal. Sure enough, we
can put this generating function into a function view and already get a discrete
signal with step width 1. To sample the signal with another sampling rates, say,
with step width 2, we could either

1. manually iterate through the function view with step 2,

2. use a step iterator with step width 2 to iterate through the function view ,
or

3. wrap a permutation view with an appropriate re-indexing scheme around
the function view .

The later case is shown in Listing 5.6. Note that due to the “laziness” of views,
the generating function is not called until the value is actually fetched. Thus,
either the sampled view itself can be used, or, as shown in Listing 5.6, we
decide to copy the sampled signal into another container such as a vector.

5.2.2 Windowing

One of the most important tools to analyse a (discrete and periodic) signal is
the Discrete Fourier Transform (DFT), which converts the given signal into its
frequency domain representation. In order to avoid some unwanted effects such
as spectral leakage [Smi97], the signal is often multiplied with a window function
before calculating its DFT.

There exists a multitude of different window functions; one of the most popular
is the Hamming window. Given a discrete signal of length N , the Hamming
window is described by the formula

w[k] = 0.54− 0.46 cos
2πk

N + 1
for k = 0, . . . , N.
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typedef boost : : view : : function view< GenerateSignal > SignalFunction ;
typedef boost : : view : : permutation view<

SignalFunction , std : : vector<int> > SamplingView;

// Samples in reverse order , and only every second value .
std : : vector<int> indices ;
for ( int i = 0; i < 64; ++i )
{ indices . push back( 2∗(63− i ) ) ; }

SignalFunction signalF( 0, 64 ) ;
SamplingView sampledF( signalF , indices ) ;

std : : vector<double> signal ( sampledF. s ize () ) ;
std : : copy( sampledF. begin () , sampledF.end() , s ignal . begin() ) ;

Listing 5.6. Sampling a continuous signal.

We might now implement this operation in terms of the data/view model: first
of all, the signal itself is assumed to be stored in a container, such as a STL
vector. The Hamming window can be represented by a function view. The
element-wise multiplication of the signal with this view requires a transform
view with multiplication as its transformation function.

typedef std : : vector<double> Signal ;
typedef boost : : view : : function view<HammingWindow> HammingView;

typedef boost : : tupple : : container tuple<Signal , HammingView> SignalPairs ;
typedef boost : : view : : transform view<SignalPairs , Multiplication>

WindowedSignal ;

Listing 5.7. Signal container and window view combined.

Since this is a binary function, and since a transform view can only operate
on a single container with a unary function, another in-between mechanism is
necessary which glues together these two containers (or rather, the container
and the view) to form another container holding pairs of elements. Thus, once
again, an intermediate view which pairs elements together is necessary; this
time, however, pairs do not consist of elements from the same container (as
it was the case in the last example), but of corresponding elements of two
containers of the same size. As outlined in Chapter 4, a container tuple of
size 2 does exactly this, and it does not make any difference that one of its
arguments is not a container, but a function view.

Using the two functions (or rather function objects) HammingWindow which cal-
culates the Hamming function, and Multiplication which multiplies the two coef-
ficients of a pair, Listing 5.7 shows all types necessary to accomplish our task.
Assuming that N = 64, these types can then be used to construct the necessary
views, as shown in Listing 5.8.
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Signal signal ;
// F i l l s ignal with data .

HammingView hamming( 0, 64, HammingWindow( 64 ) ) ;
SignalPairs sigPairs ( signal , hamming ) ;
WindowedSignal windowed( sigPairs ) ;

Listing 5.8. Multiplies a signal with a Hamming window function

5.3 Image iteration

Iteration is inherently a one-dimensional concept. Returning once again to our
famous loop,

for ( int i = 0; i != N; ++i )
result [ i ] = function( source [ i ] ) ;

how can we extend that basic mechanism to two- (or more) dimensional data?
Using indices and operator [], this seems really quite trivial:

for ( int j = 0; j != M; ++j )
for ( int i = 0; i != N; ++i )

result [ i ] [ j ] = function( source [ i ] [ j ] ) ;

Assuming that an image is stored as a vector of vector of pixels, i.e. as
vector< vector<PixelType> > – which is not a common way of storing images –
our loop reads like this:

vector< vector<PixelType> >:: i terator row;
vector<PixelType>:: i terator col ;

for ( row = image . begin () ; row != image .end() ; ++row )
for ( col = row. begin () ; col != row.end() ; ++col )

// uses ∗col

Of course, if the image was stored as one large chunk of data in memory – and
that is most often the case –, one might as well apply apply one-dimensional
iteration. However, structure information is lost that way. For instance, if we
wanted to process a rectangular section of the image only, this kind of represen-
tation would be rather troublesome.

5.3.1 Two-dimensional iteration

As an example how to implement two-dimensional image iteration, I present the
VIGRA image processing software package [Köt]. As described in the manual,
and in more detail in [Köt99] and [Köt00], VIGRA employs two-dimensional
iteration. As Ullrich Köethe points out this “is not directly possible using
operator overloading.” Instead, a nested class ImageIterator is created which
contains the structures to iterate both in horizontal and vertical direction. This
allows to iterate in both directions independently, as shown in Listing 5.10.
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class ImageIterator {
public :

// . . .

class MoveX {
// data necessary to navigate in X direction

public :
// navigation function applies to X−coordinate
void operator++();
// . . .

};

class MoveY {
// data necessary to navigate in Y direction

public :
// navigation function applies to Y−coordinate
void operator++();
// . . .

};

MoveX x ; // x−view to navigation data
MoveY y ; // y−view to navigation data

};

Listing 5.9. Outline of two-dimensional image iterator. From [Köt00].

ImageIterator i ( . . . ) ;
++i . x ; // move in x direction
++i . y ; // move in y direction

Listing 5.10. Iteration in two dimensions. From [Köt00].

5.3.2 Matrix view

In this presentation, I’d like to develop another approach. Remember that
a view can change the appearance of a container. So why not looking for a
view which attaches a two-dimensional “look” to a one-dimensional container?!
More precisely, we strive for a view which wraps a one-dimensional container
and provides some kind of iterator that allows two different types of iteration:

• inner (horizontal) iteration: proceeds from one pixel to the next between
a given begin/end pair which delimits the current row.

• outer (vertical) iteration: moves the begin/end pair from one row to the
next.

Such a structure is what I’d like to call a matrix view. Figure 5.3 depicts the
situation once again. Translated to code, the two nested loops to iterate over
the complete image (or over a rectangular part of it) will read something like
this:
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Figure 5.3. Iteration over an image: whereas the outer loop it-
erates over rows (given as begin/end-pairs), the inner loop iterates
over pixels.

// Outer loop advances from one row to the next
for ( MatrixView : : i terator row = view . begin () ; row != view .end() ; ++row )
{

// Inner loop advances from one pixel to the next
for ( Pixel Iterator pixe l = row. f i r s t () ; p ixe l != row. last () ; ++pixel )
{

// use ∗pixel
}

}

5.4 Image processing and enhancement

Now that we found a suitable way how to iterate over a two-dimensional image,
and therefore provide a way how to treat an image as a view, the next question
I want to raise is: which image processing algorithms can be re-formulated in
terms of the data/view model?

Definitely, not every algorithm can be transformed. As an example, consider
the connected components algorithm, which determines the component a pixel is
contained in within a (binary) image. This algorithm obviously requires global
image information; since views operate on a local level, this algorithm is not
suitable for use with the data/view model.

On the other hand, if we restrict ourselves to “local operations”, a re-formulation
might be possible and useful. For instance, pixel-wise operations are ideally
suited for the use of views; such operations could be, for instance,

• colour-to-colour or colour-to-grey scale conversions

• calculation of the negative image

• brightness, contrast, saturation, or colour enhancements.
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Also operations which consists essentially of a re-ordering of pixels are candi-
dates for a re-formulation. Typical simple examples are if one wants to

• rotate an image left or right, or

• flip an image vertically or horizontally.

Many image processing algorithms are “local” in the sense that they only require
a small neighbourhood around the current pixel to work on. Examples are

• local filter operations such as blur or sharpen

• most edge detection algorithms.

Another such function which is calculated using a 3 × 3 neighbourhood, and
which I’d like to consider in greater detail in the next subsection, is the discrep-
ancy norm [BBK96].

One question arises when working with such functions: How to deal with image
boundaries? In principle, there are two ways how to proceed at the boundaries
where the neighbourhood exceeds the image borders vertically or horizontally:

1. Ignore such pixels completely. For instance, for a 3 × 3 neighbourhood,
all pixels in the top-most and bottom-most row and in the left-most and
right-most column would be skipped.

2. Wrap the neighbourhood around the image boundaries.

For the later approach, using a cyclic iterator which wraps around containers
might be useful, as was discused in Subsection 3.4.2.

5.4.1 Image segmentation with the discrepancy norm

Among the multitude of algorithms to detect edges in images, there are some
approaches that utilize fuzzy reasoning. More precisely, for each pixel in the
image some suitable classification numbers are calculated; then, these numbers
are used as input values to a fuzzy system which contains the rules describing
the “edginess” and which decides whether the pixel is an edge pixel or not.

This mechanism can be either supervised, as described in [Ara00], or unsuper-
vised, as is the approach using the discrepancy norm presented in [BBK96]. This
approach has the additional advantage that it does not only separate between
edge and non-edge pixels, but does a classification for each pixel whether it lies
in a “Homogeneous”, “Edge”, “Halftone”, or “Picture” area.

The approach of [BBK96] is based on the discrepancy norm1.

1 The definition of the discrepancy norm dates back to 1916 [Wey16]. Its application in
pattern recognition was first pointed out in [NW87].
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5.4.1. Definition.

The mapping

‖.‖D : Rn −→ R,

~x 7−→ max
1≤a≤b≤n

∣∣∣∣∣
b∑

i=a

xi

∣∣∣∣∣
is called the discrepancy norm on Rn.

Since this formula would require O(n2) operations to calculate, the following
formula is more practical to use:

5.4.2. Theorem.

Let Xj :=
∑j

i=1 xi denote the partial sums for 1 ≤ j ≤ n. Then, for all
~x ∈ Rn,

‖~x‖D = max
1≤b≤n

Xb − min
1≤a≤n

Xa

holds.
Proof.
See [BBK96]. 2

Time for some definitions: we work with either grey level or RGB images of
dimension W ×H, where each of the three colour bands has 1 byte, i.e. 8 bits,
of information. More formally, this reads as:

5.4.3. Definition.

A W ×H matrix of the form

(v(i, j)), i = 0, . . . ,W − 1, j = 0, . . . ,H − 1

is called an 8 bit grey level image of width W and height H. Its entries
v(i, j) ∈ {0, . . . , 255} are called pixels at (i, j).
A W ×H matrix of the form

((r(i, j), g(i, j), b(i, j))), i = 0, . . . ,W − 1, j = 0, . . . ,H − 1

is called a 24 bit RGB colour image of width W and height H. Its entries

p(i, j) := (r(i, j), g(i, j), b(i, j)) ∈ {0, . . . , 255}3

are called RGB pixels at (i, j), where r(i, j) represents the red, g(i, j) the
green, and b(i, j) the blue portion of the pixel.

In order to calculate the discrepancy norm for a given 3 × 3 neighbourhood of
a pixel, the neighbouring pixels have to be enumerated such that they form a
tuple of size eight. This is done as shown in Figure 5.4, that is, we define
an enumeration mapping li,j : {1, . . . , 8} −→ 0, . . . ,W − 1× 0, . . . ,H − 1 which
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4

51

32

678

Figure 5.4. Enumeration of pixels within the 3×3 neighbourhood.

maps 1 7→ (i, j − 1), 2 7→ (i− 1, j − 1) and so on.

Then we define

e(i, j) := ‖v(l(.))− (v̄, . . . , v̄)‖D

for the grey level case, and

e(i, j) := ‖r(l(.))− (r̄, . . . , r̄)‖D

+ ‖g(l(.))− (ḡ, . . . , ḡ)‖D

+
∥∥b(l(.))− (b̄, . . . , b̄)

∥∥
D

for the RGB colour case, where v̄, r̄, ḡ, and b̄ denote the mean values, i.e.
v̄ = v(l(1))+···+v(l(8))

8 and so on.

In Figure 5.5, several different neighbourhoods and the corresponding values
of e(i, j) are shown. For the grey level case – which might be easily generalized
to the colour case – we might observe the following:

Observation 1. e(i, j) is zero in a completely homogeneous area.
All eight entries of the neighbourhood being equal means v(l(1)) = v(l(2)) =

. . . = v(l(8)) = v̄, which implies ‖v(l(.)) − (v̄, . . . , v̄)‖D = ‖(0, . . . , 0)‖D = 0.

Observation 2. e(i, j) is relatively low when pixel values alternate between
black and white, as is the case in half-tone, “chequerboard-like” areas.
Assume that there is an a such that the pixels at (i − 1, j), (i, j − 1), (i +

1, j) and (i, j + 1) — the “white” pixels of the chequerboard—have a value

of v̄ + a, whereas the black pixels have a value of v̄ − a. Then e(i, j) =

‖(v̄ + a, v̄ − a, v̄ + a, v̄ − a, . . .) − (v̄, . . . , v̄)‖D; since max Xb = max(a, a−a, a−
a + a, . . .) = a and min Xb = min(a, a − a, a − a + a, . . .) = 0, their sum is

e(i, j) = a.

Observation 3. e(i, j) has its maximum if the neighbourhood has a sequence
of black pixels followed by another sequence of white pixels, as shown in
the right-most example of Figure 5.5.
Assume that there is an a such that the first four pixels have a value of v̄−a, the

second consecutive four one of v̄+a. Then e(i, j) = ‖(a, a, a, a,−a,−a,−a,−a)‖D;

since max Xb = 4a and min Xb = 0, e(i, j) = 4a.

Out of these facts we can conclude that e(i, j) indeed serves as an indicator
to which degree the pixel is lying at or near an edge. Additionally, as tests in
[BBK96] indicate, it is more robust w.r.t. noise than other conventional edge
detectors.
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0.0 510.0

Figure 5.5. Several different neighbourhoods around the central
pixel. e(i, j) increases from left to right.

5.4.2 Image enhancement

Image enhancement covers several different tasks such as removing or smoothing
out noise while preserving or enhancing edges. In the past, the most common
approach was to design a filter as sophisticated as possible which performed the
enhancement on the complete image.

In recent years, another approach was investigated [CK95]. Instead of using one
filter for the whole image, a filter bank with several filters of different character-
istics is created. Then, a mechanism has to be developed which decides for each
pixel which filter to apply, or, more generally, how to weigh each filter in the
filter bank [CK95]. Fuzzy reasoning turned out to be a suitable filter-selecting
mechanism; hence, we will follow that approach in this presentation.

5.4.3 Implementation of the enhancement view

The previous presentation of an image segmentation algorithm and its use to
enhance images is independent from and not limited to our data/view model.
Sure enough, however, I’d like to present this example as a final demonstration
of the capabilities of the data/view model.

The first step in order to do this is to create or load an image and to “wrap it
around” its boundaries; for this, I used a window view due to its internal usage
of a cycle iterator.

In the next step, we have to form the neighbourhood of pixels around the cen-
tral current pixel. Since we do not only want to calculate e(i, j) out of this
neighbourhood, but also apply a filter onto it, the complete 3× 3 area is passed
to the neighbour view, as shown in Listing 5.11.

typedef boost : : view : : neighbour view<WrappedImage, 9> View3x3;
View3x3 : : difference type mask3x3( −str ide−1, −str ide , −str ide+1,

−1, 0 , +1,
+stride−1, +stride , +str ide+1 );

View3x3 view3x3( wrappedImage, mask3x3 ) ;

Listing 5.11. The “image enhancement view” operates on a 3 × 3
neighbourhood.
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The implementation of the function computing the discrepancy norm of the
neighbourhood is relatively straight-forward. The only point to watch is that,
although its input values are all integer values in the range {0, . . . , 255}, the
computation has to be done with floating point precision to avoid rounding
errors.

The calculated discrepancy norm and the variation are then taken as input for
another function which determines the segmentation type of the area. This
function wraps a very simple fuzzy system as described in [BBK96] with two
input variables, one output variable, and five rules to decide between one of the
four different types.

The final step is to use the computed segmentation type in order to decide which
filter to take. The function object which combines all these steps is shown in
Listing 5.12.

struct ImageEnhancer :
public std : : unary function< boost : : tupple : : n fold tuple<uchar ,9>::type ,

uchar >
{

result type operator()( const argument type& u ) const
{

// Reorder neighbourhood elements as shown in Figure 5.4.
boost : : tupple : : n fold tuple<uchar ,8>:: type arg(

u. get3 () , u. get0 () , u. get1 () , u. get2 () ,
u. get5 () , u. get8 () , u. get7 () , u. get6() ) ;

double dnorm = discrepancyNorm( arg ) ;
double var = variance( arg ) ;

AreaType areaType = determineAreaType( dnorm, var ) ;

switch( areaType )
{
case Homogeneous: return f i l t e rP i xe l ( u, ident ) ;

break ;
case Edge: return f i l t e rP i xe l ( u, sharpen ) ;

break ;
case Halftone : return f i l t e rP i xe l ( u, blur ) ;

break ;
case Picture : return f i l t e rP i xe l ( u, smooth ) ;

break ;
}

}
};

Listing 5.12. First the type of the neighbourhood is determined; then,
an enhancing filter is selected accordingly.

What is left is to use this function object. Another view, namely a transform
view, does take our ImageEnhancer function and applies it to the wrapped neigh-
bour view. In code, this needs just another two lines:
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typedef boost : : view : : transform view<View3x3, ImageEnhancer> EnhancedView;
EnhancedView enhancedView( view3x3 ) ;

Figure 5.6. Original image, segmentation, and enhanced image.

The computations are relatively fast and take about 0.5 seconds for an 768×576
grey-level image. Figure 5.6 shows one example of a “noisy” image, its segmen-
tation, and the computed enhanced image where the unwanted “chequerboard”
artefacts are removed.
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[Köt] Ullrich Köthe, VIGRA - Vision with Generic Algorithms, Cognitive
Systems Group, University of Hamburg, Germany.

[Köt99] , Reusable software in computer vision, Handbook on Com-
puter Vision and Applications (B. Jähne, H. Haußecker, and
P. Geißler, eds.), vol. 3, Acadamic Press, 1999.



Bibliography 69

[Köt00] , STL-Style Generic Programming with Images, C++ Report
Magazine 12 (2000), no. 1.

[KR88] Brian W. Kernighan and Denis M. Ritchie, The C programming lan-
guage, second ed., Prentice Hall, 1988.

[Küh99] Thomas Kühne, A functional pattern system for object-oriented de-
sign, Forschungsergebnisse der Informatik, no. 47, Verlag Dr. Kovač,
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