
Submitted by
Peham Laura

Submitted at
Department of
Knowledge-Based
Mathematical Systems

Supervisor
Assoc. Prof. Mag. Dr.
S. Saminger-Platz

Co-Supervisor
DI Robert Pollak, JKU
Dr. Bettina Heise, RECENDT

August 2019

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstraße 69
4040 Linz, Österreich
www.jku.at
DVR 0093696

Deep Learning Approaches

to OCT-Image Classification

for Technical Materials

Master Thesis

to obtain the academic degree of

Diplom-Ingenieurin

in the Master’s Program

Computermathematik

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Masterarbeit selbstständig und ohne
fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt bzw.
die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht habe. Die
vorliegende Masterarbeit ist mit dem elektronisch übermittelten Textdokument identisch.

Statutory Declaration

I hereby declare under oath that the submitted Master’s Thesis has been written solely by me
without any third-party assistance, information other than provided sources or aids have not
been used and those used have been fully documented. Sources for literal, paraphrased and
cited quotes have been accurately credited. The submitted document here present is identical
to the electronically submitted text document.

Laura Peham
Linz, August 2019

Acknowledgment

Throughout the writing of this thesis I have received a lot of support and assistance and I am
grateful to all of those with whom I have had the pleasure to work during this project.

I would first like to thank my thesis supervisor Assoc. Prof. Mag. Dr. S. Saminger-Platz. This
thesis would not have been possible without your commitment to enable it. Your advice and
expertise over the past months has been invaluable and you supported me greatly, especially
in finishing this work in time. At this point I would also like to thank you for welcoming me
at the institute several times throughout my years of study, it has been great working there.

I would also like to thank my most important advisor Robert Pollak. Your door was always
open whenever I ran into trouble, got stuck or had a question. With your input, guidance and
expertise you not only made this thesis possible but also taught me a lot more than theoretical
studies could ever have.

I am indebted to many of my colleagues to support me throughout my work: Paul Wiesinger,
thank you for your technical support in all things. Your skillfulness and rapidity in solving
technical problems impressed me many times. And Werner Zellinger, thank you for the
numerous thought-provocating discussions and valuable comments. Without your profound
knowledge in machine learning and willingness to share it I would have gotten stuck at times.
And I would like to thank the entire team of the department of knowledge-based mathematical
systems for welcoming me in the team over the past few years.

This work would not have been possible without the Research Center for Non-Destructive
Testing GmbH (RECENDT). Thank you for providing the topic of this thesis and for the
great opportunity to gain insight in the topics of non-destructive testing and OCT-imaging.
I am grateful for everyone who helped me with understanding and using the OCT-systems,
but especially I want to thank Dr. Bettina Heise. Your supervision, guidance and ideas haven
been fundamental for my work.

Finally, I owe my deepest gratitude to my family and my partner for providing me with
unfailing support and continuous encouragement throughout my years of study and through
the process of researching and writing this thesis. This accomplishment would not have been
possible without you. Thank you for always being there for me.

Abstract

Optical coherence tomography (OCT) is a non-destructive and non-contacting imaging
technology and can visualize the internal structures of various materials. OCT-imaging has
been used primarily for biomedical issues, e.g. , in ophthalmology to visualize retina layers
or in dermatology for the detection of skin diseases. In recent years OCT imaging has also
become popular for industrial applications for non-destructive testing of materials which is
needed in quality assurance and for the development of new materials. Deep Learning mod-
els are able to learn patterns from complex datasets and to make predictions for new data
based on this knowledge. Medical specialist literature has already covered the successful ap-
plication of deep learning on OCT-images for biomedical issues but the application of deep
learning for OCT-image classification in industrial contexts has to the best of our knowledge
not been covered by specialist literature so far. As the analysis and categorization of dif-
ferent materials is an important issue in many industrial processes the use of deep learning
on OCT-images for material classification in two different tasks will be examined: The first
task is to categorize 3D-printed objects with respect to their material (expressed by different
color pigments in the dough) with only their (greyscale) OCT-image as input. Given are ob-
jects in green, grey, red and transparent colors and two different shapes. In most of the cases
the OCT-recordings of the four colors are well distinguishable by humans. Therefore 12800
images (3200 per color) from different areas on the objects were recorded also including sur-
face defects, interior defects, plain surfaces and different slopes. Evaluating different model
architectures obtained at most 99,47% accuracy on an independent test set. Additionally fea-
tures from the OCT images were extracted to compare the performance of the deep learning
model with two other machine learning methods namely random forest and support vector
machine which obtained 95,29% resp. 95,19% accuracy on the test set. The second task is the
categorization of OCT-images of different materials with respect to their coating. Given are
five different paper-like materials with coated and uncoated areas on it. 4500 OCT-images of
coated and 4500 OCT-images of uncoated areas were recorded and classified with a final test
accuracy of 98,58%. Again this result was compared with the results obtained by the other
machine learning methods: Random forest reaches a test accuracy of 95,11% and support
vector machine reaches a test accuracy of 94,04%.

Contents

1 Introduction 1
1.1 Problem Description . 2
1.2 Structure of this Work . 2

2 Optical Coherence Tomography 3
2.1 Comparison of OCT with Other Imaging Modalities 3
2.2 Technology . 4
2.3 Introduction and Applications . 5

3 Machine Learning 8
3.1 Preliminaries . 8
3.2 Neural Networks — Deep Learning . 17

3.2.1 The Structure of Neural Networks 18
3.2.2 Learning . 19
3.2.3 Regularization . 22
3.2.4 Hyper-Parameter Tuning . 28
3.2.5 Convolutional Neural Networks . 33

3.3 Selection of Feature-Based Machine Learning Methods 37
3.3.1 Random Forests . 37
3.3.2 Support Vector Machines . 41

4 Deep Learning for OCT-Images 48
4.1 State of the Art . 48
4.2 The First Task – ’Material’ Classification 48

4.2.1 Problem Description . 48
4.2.2 Deep Learning . 50
4.2.3 Feature-Based Methods – Random Forests and Support Vector

Machines . 55

i

CONTENTS

4.2.4 Comparison . 59
4.2.5 Remarks . 60

4.3 The Second Task – Inspection of Coatings 61
4.3.1 Problem Description . 61
4.3.2 Deep Learning . 62
4.3.3 Feature-Based Methods – Random Forests and Support Vector

Machines . 64
4.3.4 Comparison . 69
4.3.5 Remarks . 69

4.4 Comparison and Conclusions . 71
4.5 Possible Extensions and Outlook . 72

5 Implementation 74

ii

List of Figures

2.1 Comparison of OCT with other imaging modalities 4
2.2 Schematic OCT setting, from [63] . 5
2.3 OCT-imges of medicine and industry . 7

3.1 Polynomial fit . 12
3.2 Under- and overfitting . 13
3.3 The bias-variance trade off . 14
3.4 Confusion matrix for a classification task with k classes c1, .., ck 14
3.5 Confusion matrix for a binary classification task 15
3.6 Data splitting . 17
3.7 k-fold cross-validation . 18
3.8 ReLU activation function . 19
3.9 Schematic representation of an artificial neural network 20
3.10 Detailed view of one neuron . 21
3.11 Applying dropout to a neural network . 24
3.12 Obtained networks after applying dropout 25
3.13 Application of batch normalization . 27
3.14 Data augmentation. 28
3.15 A basic convolutional neural network. 33
3.16 An example for a 2-D convolution operation. 35
3.17 An example for a horizontal-edge detecting filter. 36
3.18 The max-pooling. 36
3.19 Max-pooling makes the network translation invariant. 37
3.20 The different kinds of splitting . 40
3.21 The separating hyperplanes . 42
3.22 The margin of a separating hyperplane . 43
3.23 The different kinds of points . 46

iii

LIST OF FIGURES

4.1 3D-print objects . 49
4.2 OCT-images of the 3D-printed objects . 49
4.3 The recordings of different surfaces and defects. 50
4.4 The network architecture of the final model. 52
4.5 False predicted images. 53
4.6 Training and validation accuracy curves . 53
4.7 Some filters of the convolutional layers for the first task. 54
4.8 Visualization of the output layer for the first task. 55
4.9 Visualization of one decision tree for the first task. 58
4.10 Detailed visualization of the first three depth-levels. 59
4.11 Boxplots of test accuracies for the first task. 61
4.12 OCT-images of the second task. 62
4.13 Wrongly predicted images of the coating-task. 64
4.14 Some filters of the convolutional layers for the second task. 65
4.15 Visualization of the output layer for the second task. 66
4.16 Visualization of one decision tree for the coating task. 68
4.17 Detailed visualization of the first three depth-levels. 69
4.18 Boxplots of test accuracies for the second task. 70

iv

List of Tables

4.1 Number of recordings for the first task . 50
4.2 Accuracies and average training times for the three different machine

learning methods applied to the first task. 60
4.3 The validation and test accuracies for the five different data-splits obtained

with deep learning. 63
4.4 The validation and test accuracies for the five different data-splits obtained

with random forest classifiers. 67
4.5 The validation and test accuracies for the five different data-splits obtained

with support vector machine classifiers. 68
4.6 Average accuracies and training times for the three different machine

learning methods applied to the second task. 70
4.7 Accuracies for the three different machine learning methods. 71

v

1 Introduction

In recent years terms like ’Artificial Intelligence’ (AI) and ’Machine Learning’ (ML) re-
ceived significant rise of media attention. It seems like intelligent machines and human-like
robots are both fascinating and worrying for human beings. The dream of creating ’think-
ing’ machines goes back to at least the ancient Greeks [16] but the tremendous growth in
machine learning was only after the enhancements of computer processors and the increase
in the amount of available data. This evolution improved in particular one machine learning
technique drastically: deep learning. Deep learning models are able to learn models from
very extensive and complex datasets and make predictions for new data based on this models
without the need of user-defined rules describing the task to solve. It is a machine learning
method which deals with deep artificial neural networks. To obtain output values for each
input value neurons (units) are arranged in layers and each layer takes the output of the for-
mer layer as input and passes it forward to the next layer. Different kinds of architectures can
be used to handle different input structures e.g. for the classification of images convolutional
layers are used in addition to fully connected layers. The aim of this thesis is to apply deep
learning to OCT-data.
Optical Coherence Tomography (OCT) is a non-destructive and non-contacting imaging modal-
ity developed in the late 1980s. It enables the visualization of the internal structure of ma-
terials which is often an important task in biomedical investigations on the one hand and
industrial processes on the other hand. It works similar to ultrasound but it uses light waves
instead of sound waves and has the great advantage over other imaging modalities that state-
of-the-art systems can reach an axial resolution of 1-10µm. However one disadvantage is that
because of the scattered light the imaging depth is limited to about 2mm. Medical specialist
literature has already covered the successful application of deep learning on OCT-images of
the human eye [3, 33, 29]. In this thesis we will examine the use of deep learning on OCT-
images in the context of industrial application such as material classification and inspection
of coatings and compare this method to other machine learning approaches.

1

CHAPTER 1. INTRODUCTION

1.1 Problem Description

As already mentioned before OCT-imaging is a very important modality for many industrial
processes. One application often used is the classification of different materials as they have
different interior structures which can be seen very well in OCT-images. In this case the
different materials will be expressed by different color pigments. Looking at them with an
OCT-system shows different levels of reflection/absorption and in most of the cases it would
also be possible to distinguish the colors manually. The goal of this thesis is to see how well
a deep neural network can independently learn a classification model. Another important
application of OCT in industrial processes is the inspection of coating thickness. It is for
example used in pharmacy to supervise the coatings on pills and in other different fields
interested in the analysis of layers.

1.2 Structure of this Work

In Chapter 2 and 3 we will provide an introduction to the theory of optical coherence tomog-
raphy and machine learning. First we will cover the optical coherence tomography imaging
modality and its applications in medicine and industry and also show some typical example
images. This Section will be followed by an introduction to the theory of machine learn-
ing. As deep learning is a specific machine learning method it is important to understand
the concepts and principles of theoretical machine learning, followed by a discussion to the
basic principles of deep learning, in particular convolutional neural networks, as well as ran-
dom forests and support vector machines. In the second part of the thesis we will use deep
learning for practical applications, see Chapter 4. Here we will present the two tasks which
are to solve, talking about model conventions and occurring problems. In the end there are
presented some results and possible extensions and we will also compare the results of deep
learning with the results of two other machine learning approaches namely random forest and
support vector machine.

2

2 Optical Coherence Tomography

We briefly introduce some basic theory and applications of optical coherence tomography
following [11].
Optical coherence tomography (short OCT) was invented in the late 1980s and early 1990s
and was demonstrated first by Huang et al. in 1991 [23]. It is a non-destructive and non-
contacting imaging technology and can visualize the internal structures of various materials.
OCT-imaging is used primarily for biomedical issues e.g. in ophthalmology to visualize the
retina layers or in dermatology for the detection of skin diseases. In recent years it also
became popular for industrial applications for non-destructive testing of materials which is
needed in quality assurance and for the development of new materials.

2.1 Comparison of OCT with Other Imaging Modalities

Optical coherence tomography has similarities with both ultrasound and confocal microscopy.
Clinical ultrasound imaging has a great penetration depth and is therefore able to visualize
structures inside the human body, for example organs. But because of the sound wave fre-
quency used the resolution is typically limited to 0.1–1 mm. Better resolution is given with
a high frequency ultrasound which reaches 15-20 µm but with this technology the imaging
depth is limited to a few millimetres. On the other side of OCT imaging there is confocal
microscopy which can achieve remarkably high resolution approaching 1 µm but because
of the optical scattering the imaging depth is limited to only a few hundred micrometers.
The advantage of OCT is that it fills a gap between ultrasound and microscopy as it has a
very high resolution of 1-10 µm whereas the imaging depth limits to about 2 mm, see Figure
2.1. Another advantage compared to other imaging technologies is its non-contacting and
non-invasive usage.

3

CHAPTER 2. OPTICAL COHERENCE TOMOGRAPHY

Figure 2.1: Comparison of OCT with other imaging modalities, adapted from [11].

2.2 Technology

OCT-imaging works similar to ultrasound but it uses light waves instead of sound waves.
Several methods have been developed so far but in general the magnitude and echo time
delay of the light which is back-reflected from the internal micro structures of materials is
measured. The scheme is the following: Low coherent light from a broadband light source
(e.g. laser) is split into two paths. One path is directed towards a reference arm and the other
is directed towards the sample. The backscattered light from the sample is then interfered
with the reflected light from the reference arm. The OCT-system used for this thesis has
spectral/Fourier domain detection as interferometric detection technique: The light beams of
the reference arm and the sample arm have a time delay related to the depth of the sample
structure. The interference is acquired with a spectrometer as a function of frequency and
then the depth scan can be computed by a Fourier-transform from this spectra. For getting
a 2D-image point-wise scanning in lateral direction is performed. Like already mentioned
before state-of-the-art OCT-systems can reach an axial resolution of 1-10µm but because
of the scattered light the imaging depth limits to about 2mm. For a scheme of an OCT-
system see Figure 2.2. OCT imaging has some special features and difficulties compared
to other imaging technologies. Here the resulting image depends strongly on the scattering

4

CHAPTER 2. OPTICAL COHERENCE TOMOGRAPHY

features of the material used. Surfaces do not always appear as straight and exact lines as
coarse structures may scatter the light in another way than smooth surfaces do. Also the
depth to which the internal structure of the tissue can be visualized varies with the choice of
the material as for example white-coloured objects generally strongly disperse the light and
therefore the light can not enter very deep.

Figure 2.2: Schematic OCT setting, from [63]

2.3 Introduction and Applications

The main application for OCT-imaging is still in the biomedical field. After the invention
in the late 1980s and early 1990s the development of the imaging device in ophthalmology
processed quickly given that the first in vivo retinal images were obtained in 1993 by Fercher
et al [14] and Swanson et al [48] independently. With the application of OCT for clinical
studies in the mid 1990s the imaging modality was investigated for the visualization of many
different macular diseases like macular edema, macular holes or age-related macular degen-
eration. Because OCT allows to detect early stages of diseases before physical symptoms
appear, it is a powerful technology in ophatlmology and often used as a standard technique
for the monitoring of retinal diseases [12] as well as glaucoma [7]. A sign for the impor-
tance of this medical field for the further development of the system is that in 2008 half of

5

CHAPTER 2. OPTICAL COHERENCE TOMOGRAPHY

all OCT-publications have been published in ophthalmic journals. As it became clear that the
use of longer optical wavelengths can reduce scattering and increase the penetration depth
OCT-imaging also became practicable in other biomedical areas. Currently an important
area of research is e.g. the detection of atherosclerotic plaque which lead into the clinical de-
velopment of intra-vascular OCT imaging. Another major application and also an active area
for research is the examination of early neoplastic changes which is important for e.g. gas-
trointestinal, biliary or pulmonary tracts. To enable internal body imaging very early also
endoscopic OCT systems were developed. In 1997, the first in vivo endoscopic OCT imag-
ing was performed and demonstrated the importance of OCT also for the observation of organ
systems. In contrast to conventional endoscopy OCT endoscopy is able to visualize subsur-
face tissue morphology which is relevant for the prevalence of gastrointestinal cancers. But
since there is a reasonable variation in pathology and there are many types of low incidence
cancers a large number of patients are needed to reach statistical significance. Therefore,
the usage of OCT for cancer detection will require specific studies and is an ongoing area of
research, see e.g. [9]. Other biomedical fields using OCT imaging technology are; e.g.

• Dermatology,

• Laryngology,

• Dentistry,

• Gynecology,

• Development biology.

Because of its advantages compared to other imaging technologies OCT became also pop-
ular for industrial applications in recent years, see e.g. [63]. One very important area is the
non-destructive testing of materials which is often used for the purpose of quality control
in industrial processes and in food industry. This includes the detection of defects for dif-
ferent materials like glass fibre composites or injection moulded polymers [47], the analysis
of the distribution of particles in protective coatings, for example in pharmaceutical tablets
[32], or of pores in polymer foams. For the packaging industry (among others) an important
application is also the examination of the layers in multilayer foils [18] and the detection
of an incomplete sealing. Another interesting application is the non-invasive examination of
museum paintings [30]. For further reading and other non-biomedical applications see also
[13, 21, 35]. With OCT imaging it is possible to visualize internal defects as well as sur-
face cracks or incomplete coatings for various materials. In industry OCT systems can also
be used to provide complementary information for the development of new materials. See
Figure 2.3 for two examples of OCT-imaging in medicine and industry.

6

CHAPTER 2. OPTICAL COHERENCE TOMOGRAPHY

(a) OCT-image of a human retina, from [53].

(b) OCT-image of a multi-layered plastic foil, from [63].

Figure 2.3: Two typical applications for OCT-imaging. (a) Opthalmology: OCT-image of a
human retina. (b) Industrial application: OCT-image of a multi-layered plastic foil.

7

3 Machine Learning

One of the typical Machine learning tasks is concerned with the automatic detection of com-
plex patterns in data and has become very popular in the last decades. Nowadays machine
learning is applied in several areas sucht as, e.g. : the advertising industry using personal-
ized promotion, cameras detecting faces in images, anti-spam-software filtering our mails,
smart-phones recognizing speech and finally cars driving automatically. Machine learning
has become a common method in many different areas where the problem is to detect pat-
terns in the data. On the one hand the tasks can be situations which are intuitively performed
by humans such as speech recognition and detecting objects on images with their experience
and for these the present machine learning programs reach good results under the assumption
that they have enough training data to learn from. On the other hand machine learning is
also frequently used in the analysis of very large and complex datasets like weather predic-
tion, search engines or electronic commerce. With their almost unlimited memory capacity
and computational power computers can perform tasks which are beyond human capabilities.
Broadly speaking one can say that machine learning tries to obtain knowledge out of previ-
ous data with the goal to find structure in it or to predict future outcomes. But what means
’learning’ for machines? Tom Mitchell stated 1997 in his book ’Machine Learning’ [34]: “A
computer program is said to learn from experience E with respect to some class of tasks T
and performance measure P if its performance at tasks in T, as measured by P, improves with
experience E.”

3.1 Preliminaries

In this Section we will briefly summarize some basic facts from machine learning following
the notations and wordings as introduced in [16, 19, 42].

8

CHAPTER 3. MACHINE LEARNING

Supervised Versus Unsupervised Learning

As already stated before machine learning is about finding patterns in a given dataset. For this
machine learning methods can be broadly categorized in two types: Unsupervised learning
deals with a dataset which represents objects or items by several parameters, also called fea-
tures, and tries to find relationships and structure within the dataset. The goal is for example
to find the probability distribution which generated the data (density estimation), to catego-
rize the data automatically in a (unknown) number of clusters (clustering) for the automatic
organization of datasets or novelty detection to find atypical or novel points in a dataset (for
example spam-mail detection). More detailed information about the mentioned applications
can be found in [2].
Supervised learning on the contrary deals with a labelled dataset which means that for each
input value or tuple the correct output value is given. The goal is to find a function which
maps each input value or tuple to its corresponding target value and to use this function to
predict the labels for unlabelled data in the future.
So roughly speaking, both methods observe several examples of a random vector x but un-
supervised learning methods try to find the probability distribution p(x) itself or interesting
properties of that distribution whereas supervised learning methods observe additionally cor-
responding target values y and learn to predict y from x and therefore are concerned with
determining properties of the conditional density p(y|x). The terminology evolves from the
idea that in supervised learning the target value is provided by some ’supervisor’ who guides
the learning process whereas in unsupervised learning the development has to be made with-
out that guidance. In the following we will only focus on supervised learning tasks.

The Set-up

The domain set is the set X of objects for which we would like to predict some target value
in the future based on a set of training data. Usually each instance xi ∈ X is represented
as a vector of d features (xi1, x

i
2, .., x

i
d) where a feature is a numerical or categorical value

representing a certain property of the object. The target values, also called labels, are given
in a set Y of possible values. If the label values are numerical the learning problem is called
regression task and the desired function is given by f ∗ : Rd → R. If the label values are
k distinct classes it is called classification and the desired function is given by f ∗ : Rd →
{1, .., k} (assuming numerical features). Supervised learning methods need as an input a set
of labelled data, i.e. , a set S = {(xi, yi) | xi ∈ X, yi ∈ Y)}, and try to find the mapping
f ∗ : X → Y with f ∗(xi) = yi for all (xi, yi) ∈ S.
For the estimation of generalization abilities the given data set is split into a set of n training
samples T and m test samples Z. The training data is used during training to find the model,

9

CHAPTER 3. MACHINE LEARNING

i.e. , the pairs (xi, yi) ∈ T are used to obtain an estimate for the true mapping f ∗. The test data
is needed afterwards to evaluate the trained model on unseen data samples to get an estimate
about the prediction abilities of the obtained model. The randomness of the data splitting
is very important and the sets should be absolutely independent and identically distributed
(i.i.d) (see also Section ’Data Splitting’).

The Loss Function

The loss function is also often called objective function, error function or cost function.
Assume that f is the mapping between the input and output values which has been estimated
from a training set T , so that f(x) gives the predicted output value ỹ for an input x. Then the
loss function L(y, f(x)) measures the error which occurs for this data sample (x, y) where
y is the real target value for x and f(x) is the target value predicted by the trained model.
Typical choices for loss functions in regression problems are

L(y, f(x)) = (y − f(x))2, (squared error)

L(y, f(x)) = |y − f(x)|, (absolute error)

and for classification

L(y, f(x)) =

1, if f(x) = y,

0, else.
(0-1 loss)

The loss function is used for learning in the following sense: Assume the training set is given
by {(xi, yi) | i = 1, ..n}. Then the training error is the expected loss over the set of training
samples with underlying distribution p̂data and therefore is given by

Err = E(x,y)∼p̂data [L(y, f(x))] =
1

n

n∑
i=1

L(yi, f(xi)) (3.1)

This error is also called empirical error or empirical risk. As the loss is a value for how
far the obtained function f is away from the true function f ∗ the empirical error measures
the quality of f on the samples in the training set. Having selected the training samples
independently and identically distributed they should represent the properties of the whole
dataset and therefore it makes sense to search for a solution f which minimizes the error
on that data. But of course this solution is then biased with the samples in the training set
as it is adjusted to exactly those data points and still an estimation for the match of f to
new data drawn from the true distribution pdata is required. Assume that m test samples
Z = {(xn+1, yn+1), .., (xn+m, yn+m)} independent of the training set are given. Then the
expected generalization error is given by

Err = E(x,y)∼pdata [L(y, f(x))]

10

CHAPTER 3. MACHINE LEARNING

and, by the law of large numbers, can be approximated by the average loss over the test
samples (i.e test error)

Err ≈ 1

m

n+m∑
i=n+1

L(yi, f(xi))

for m → ∞ and (xi, yi) ∈ Z. As the test error is estimated for new data samples which
were not used for training, the test error is usually higher than the training error which is
measured for the samples used to fit the model. How well a machine learning algorithm will
perform depends on its ability to make the training error and at the same time the gap between
training and test error small. This leads to the bias-variance trade-off and the problem of
under- respectively overfitting of models.

The Bias-Variance Trade-Off

One important choice regarding the model is its complexity. For an example see Figure
3.1 which shows a series of points generated by a sinus-function which is approximated
by polynomials of different orders i.e. different complexity. There were generated in total
17 points in the range of -50 to 50 and only the half of them (black) was used for fitting
the polynomials. The minimal squared error reached is 4.16 for the first-order polynomial,
1.94 for the third-order polynomial, 0.03 for the 6th-order polynomial, 0 for the 12th-order
polynomial and also 0 for the 18th-order polynomial. Afterwards the error was measured
with respect to the other half of the points (red) and the minimal squared error reached is now
4.02 for the first-order polynomial, 1.75 for the third-order polynomial, 0.09 for the 6th-order
polynomial, 0.19 for the 12th-order polynomial and 1.29 for the 18th-order polynomial. It can
be seen that with increasing complexity (represented by the increasing number of parameters
defining the polynomial of a certain degree) the error on the data used for fitting (training
data points) decreases. The polynomials of order higher than the number of data points are
able to fit the points exactly and therefore reach zero error. But the polynomials which reach
a minimal error of zero on the training data points do not reach the minimal error on the
test data points and this is due to overfitting: the higher complexity allows the polynomials
to fit the training data exactly but it may lead to curves which oscillate in-between them
and therefore reach higher error on new data (test data). Note that the range of x-values is
chosen quite small. For bigger ranges the error would be much bigger for both training and
test data. To fit to all different tasks the model needs to have a certain complexity and the
problem is the following: Allowing a high number of parameters of the model (and therefore
a high complexity) tends the model to (exactly) fit the training data causing the training error
to decrease towards zero. But in this case at some point the model fits too much to the
given data (overfitting) and from that point on the generalization abilities of the model are

11

CHAPTER 3. MACHINE LEARNING

Figure 3.1: This graph shows a series of points (black and red) generated by a sinus func-
tion which is approximated by polynomials of different orders. The polynomials are 1st-
order (magenta), 3rd-order (green), 6th-order (orange), 12th-order (cyan) and 18th-order
(blue).

getting worse and therefore the test error is increasing again. On the other hand if the model
complexity is too low the model is not able to fit the data well. This can be seen as a high
training error (underfitting). As in this case the obtained function f can not fit properly to
the wanted function f ∗ also the test error can not get low, see Figure 3.2.
This can also be examined in a mathematical way [19]: Since y = f(x) and f is just an
approximation for the true function f ∗ we assume y = f ∗(x) + ε with E(ε) = 0 and
V ar(ε) = σ2

ε . The bias term is defined as a measure for the distance between the aver-
age of our estimates and the true mean. Then the expected prediction error of a function f(x)

for a given sample x = x0 using the squared-error loss is:

Errx0 = E[(y − f(x0))2 | x = x0)]

= σ2
ε + [E(f(x0))− f ∗(x0)]2 + E[f(x0)− E(f(x0))]2

= σ2
ε +Bias2(f(x0)) + V ar(f(x0))

= Irreducible error + Bias2 + Variance

The first term is the irreducible error and can not be avoided. The second term is the squared

12

CHAPTER 3. MACHINE LEARNING

Figure 3.2: Under- and overfitting demonstrated by functions f with different complexities.
In the left figure the function f is a constant (f = c) resp. linear (f = a∗x+ c) function and
therefore it depends just on one resp. two parameters. Since the function can not separate
the data well it seems to contain too less information for the given problem. On the other
hand in the right figure the function f is of very high degree and therefore is determined by
a large number of parameters. Since this function separates the given data very well but may
not reach that good results for new data points it seems to have too much data dependence
because of its high complexity. In contrast the quadratic function shown in the middle figure
seems to be most likely to give a good representation of the problem.

bias which measures the distance between the average of our estimates and the true mean.
The last term is the variance of the model at x0, i.e. the squared deviation of the function
f(x0) around its mean. As learning is concerned with minimizing the training error and at
the same time minimizing the gap between training and test error the goal is to optimize bias
and variance simultaneously, i.e. , to find the model complexity which obtains the optimal
bias-variance trade off. This property can be seen in Figure 3.3.
Another decision which highly affects over- and underfitting is the proportion of samples in
training and test sets. As the training set gives partial information about the distribution of
the whole data it follows that the larger the training set is the more likely it is to reflect more
accurately the real distribution. But on the other hand the goal of learning is the minimization
of the generalization error and its approximation gets better for a larger test set. Therefore,
one way to reduce overfitting is to use more training data. But the generation of data for
real-world applications is oft not that easy as it can be time or money consuming. Therefore
a simple alternative which also prevents overfitting is the use of regularization strategies, see
Chapter 3.2.3.

13

CHAPTER 3. MACHINE LEARNING

Figure 3.3: The bias-variance trade off.

Performance Measures

In order to compare the strength of different model architectures to each other some perfor-
mance measures are needed. A common choice is to use some loss function to determine
the strength of a model, this is often done for regression tasks. For classifiers one method to
visualize the performance is the confusion matrix, see Figure 3.4. Note: The number #i,j

states how many samples of class i were classified as class j. Therefore all #i,j with i = j

(e.g. all numbers in the diagonal of the matrix) are the correctly classified samples.

Figure 3.4: Confusion matrix for a classification task with k classes c1, .., ck.

From the confusion matrix one can easily compute the accuracy. Assume that the number of
given samples is n and the number of classes is k. Then the accuracy measures the proportion

14

CHAPTER 3. MACHINE LEARNING

of correctly classified samples and can be computed by

accuracy =

k∑
i=1

#i,i

k∑
i,j=1

#i,j

=
1

n

k∑
i=1

#i,i.

For a binary classification task (with classes +1 and -1) the confusion matrix just contains the
following values, see Figure 3.5:

• True Positives (#TP): number of samples classified as +1 and actually being +1

• False Positives (#FP): number of samples classified as +1 but actually being-1

• False Negatives (#FN): number of samples classified as -1 but actually being +1

• True Negatives (#TN): number of samples classified as -1 and actually being -1

Figure 3.5: Confusion matrix for a binary classification task. Again the elements in the di-
agonal are the numbers of correctly classified samples.

With these values other performance measures like precision, recall or F-score can be easily
computed. For a multi-class task it is not that straightforward, but is is possible to compute
the values of #TP, #FP, #FN, #TN for each class against all other classes individually.
An important task with performance measures is the choice of the right scale for the given
task. If for example the task is to classify between uniformly distributed classes then the
accuracy is in most cases an appropriate measure for the performance of the model. But
if for example the model should detect a rare disease the samples will be far away from
being uniformly distributed. Assume the dataset includes 99% negative samples and just 1%
positive samples (with regard to finding the disease or not) then a classifier which returns
always ’negative’ for every input reaches an accuracy of 99% but in practice does nothing
of interest. In this case other performance measures will give better estimates of the actual

15

CHAPTER 3. MACHINE LEARNING

performance of the model. Further information can be found in [45]. Since there are no
classes as output and therefore no straightforward ’true’ or ’false’ naming for regression
tasks all the performance measures based on the values of #TP, #FP, #FN, #TN just refer to
classification. For information about common performance measures for regression tasks see
[4].

Turning back to the statement of Tom Mitchell: “A computer program is said to learn from
experience E with respect to some class of tasks T and performance measure P if its per-
formance at tasks in T, as measured by P, improves with experience E.” We may say: In
supervised machine learning there is given some learning task T to solve which (internally)
means to obtain the best approximation f for the function f ∗ describing the mapping between
input and output. The experience E is given by the set of labelled data and P is some suitable
performance measure like accuracy or loss. Then the more samples (experience) are given
the better will the performance for the task within the meaning of the performance measure
be.

Data Splitting

For a supervised machine learning task the set of given samples (x, y) ∈ X × Y has to be
split randomly into three disjoint subsets. The training set, like already stated before, is used
for fitting the model, the test set is used to evaluate the model for getting an estimate of its
generalization abilities. The test set is not used during the training phase and gets involved
only after the selection of the final model. Suppose the test set is used for model selection,
i.e. choosing always the model with the lowest test error, then the model is somehow adjusted
to the test data. In that case computing the estimate of the generalization error based on
the test data may be better than it would be for new and unseen data and therefore it may
underestimate the true generalization error badly. Therefore also a validation set is needed
which is used to select the best model out of different machine learning algorithms, model
architectures or parameter-settings. There is no rule on how to choose the ratio between these
three sets but a typical split may be to use 50% of the data for training and 25% for validation
and testing each, see also Figure 3.6.

Cross-Validation

Cross-validation provides a means to randomize the splitting of the data into training, valida-
tion and test set in order to approach i.i.d. samples in each data set. This is in particular of
importance for small datasets due to the following reasons: We want to have the training set

16

CHAPTER 3. MACHINE LEARNING

Figure 3.6: The whole set of given labelled data is divided into three disjoint sets. The split-
ting needs to be random and the samples should be independent and identically distributed.

as large as possible to reach a good approximation for the true function f ∗, but if the valida-
tion set is too small the performance measured on this data will probably depend too much
on that certain selection and if the test set is too small the estimate for the generalization error
may be very bad. Also the selection of the data in the sets - randomly or not - could be in
such a way that the data in the training set is for example very easy to classify and the data in
the validation or test set contains unluckily many hard cases (or the other way around) which
will of course give no good model or no good estimate for the model performance. One way
to handle this problem is the use of cross-validation where the complete data set is split into
folds and then trainings are performed, e.g. , with always one fold put aside. Getting a better
estimate of the generalization error can be done in the following way: The whole dataset is
split into k folds in advance, then for j = 1, .., k the jth fold is put aside as test set. The rest
of the data without this test set is then split into training and validation set. After finding the
best model architecture and parameters for each data-split j = 1, .., k with training on the
training set of the split excluding fold j and evaluating on the validation set of the split ex-
cluding fold j the exact models should be evaluated on the appropriate test sets. The average
of the performance scores can then be seen as the estimate for the generalization abilities of
the chosen machine learning method for the given kind of data. Therefore, cross-validation
performed like that is used to compute an unbiased estimate of the generalization error. But
of course as cross-validation requires to run the whole training and evaluation process k times
it does take k times longer to get results.

3.2 Neural Networks — Deep Learning

Deep learning is a machine learning method which deals with deep artificial neural networks.
As the name indicates artificial neural networks are inspired by the structure of neural net-
works in the brain where single neurons are connected to each other and pass information on
to each other.

17

CHAPTER 3. MACHINE LEARNING

Figure 3.7: k-fold cross-validation. In this setting the data set is split into test, training and
validation sets to be able to evaluate different model architectures or parameter settings.

3.2.1 The Structure of Neural Networks

In this Section we introduce some basic notations for neural networks (compare also [16, 1]).
In artificial neural networks the neurons (units) are arranged in layers and each layer takes the
output of the former layer as an input and passes it forward to the next layer. The number of
units per layer is called the width and the number of layers is called the depth of the network,
so deep learning uses neural networks with several layers. The first layer is called the input
layer and the last one is the output layer, the intermediate layers are called hidden layers.
For the purpose of passing the inputs forward activation functions are needed to decide what
should be the output of the neuron given a certain input. These activation functions operate
as thresholds to decide whether a neuron should ’fire’ or not. A common activation function
for the input layer and hidden layers is for example the ReLU-activation which gives for the
input x of the neuron the output g(x) = max(0, x), see Figure 3.8. For the output layer of
a classification problem with c classes it is common to use the Softmax-activation which
converts c real-valued predictions v1, .., vc into output probabilities o1, .., oc by

oi =
evi∑k
j=1 e

vj
, i = 1, .., c.

To obtain the input for a neuron in the kth layer the outputs of all connected neurons of the
(k − 1)th layer are each multiplied with a weight and then summed up. Then the activation

18

CHAPTER 3. MACHINE LEARNING

x

g(x)

Figure 3.8: The rectified linear unit activation function (ReLU) given by g(x) = max(0, x).

function gets applied to this weighted sum and the obtained result is then the output of the
neuron in the kth layer which is again a part of the input for a neuron in the (k + 1)th layer.
Therefore, the weight of the connection determines how much a certain neuron in the current
layer affects a certain neuron in the next layer. The input of the first layer is the input of the
classification problem i.e. a vector x in the domain set X . The output of the last layer yields
the predicted label y from the set of possible labels Y . The goal of machine learning – as
stated before – is to find a function f which gives the best approximation for the true function
f ∗ describing the mapping betweenX and Y . In neural networks this approximation function
f(x) can be seen as a composed function f(x) = f l(..(f 2(f 1(x))) where f 1 describes the
first layer of the network, f 2 the second layer and so on assuming there are l layers. Each
of the subfunctions f j is determined by the values of the weights wj and therefore we write
f(x) as f(x;w) where w represents the weights w1, .., wl of all layers and neurons. For a
visual outline of such an artificial neural network see Figure 3.9 and 3.10. For an activation
function ϕ and the representation of the weights of the connections between layer k and k+1

by a weight matrix W k yields

hk = ϕ((W k)T ∗ hk−1) (3.2)

for the output hk of the kth layer. In this notation the value W k
i,j (which is the element in the

ith row and jth column of the weight matrix W k) is the weight connecting the ith neuron in
the kth layer with the jth neuron in the (k + 1)th layer.
Remark: It is also common to add a bias term bi in each layer i = 1, .., l, then e.g. (3.2) turns
into

hk = ϕ((W k)T ∗ hk−1 + bk).

3.2.2 Learning

To train an artificial neural network the set of given samples (x, y) ∈ X × Y has to be split
randomly into three disjoint subsets [42]. Like already stated before the training set is used

19

CHAPTER 3. MACHINE LEARNING

Figure 3.9: Schematic of an artificial neural network with two hidden layers. It has 6 units
in the input layer, 7 units in the first and 8 units in the second hidden layer and 4 units in the
output layer. The input for the first layer is given by the input values x1, .., x6 which can be
seen as vector x ∈ R6 and the weights can be represented by a weight-matrix, e.g. W 1 ∈
R7×6.

for fitting the model, the validation set is used for parameter selection and the test set is used
to evaluate the model in the end to get an estimate of its generalization abilities.
Starting with random values the network tries to adjust the weights such that the training error
for the samples in the training set as defined in Equation (3.1) gets minimized in each training
step. There are different functions to use for the loss depending on the application. For re-
gression it is common to use the squared error or the absolute error, for a binary classification
the 0-1 loss. For multiclass-classification when dealing with probabilities as network-output a
common choice is the cross-entropy which measures the distance between the ground-truth
distribution and the predictions. By propagating an input sample xi through the network
(forward propagation) a prediction label f(xi, w) is obtained and then compared to the true
label yi to get the loss. To get a good approximation f of the true function f ∗ the aim is to
minimize the loss using the following idea: Let L be the loss function. A set of weights w
satisfying the equation

δL

δw
(yi, f(xi, w)) = 0

20

CHAPTER 3. MACHINE LEARNING

Figure 3.10: Detailed view of one neuron.

minimizes the loss for the given sample (xi, yi). Therefore a set of weights w satisfying the
equation

l∑
i=1

δL

δw
(yi, f(xi, w)) = 0

minimizes the loss for the whole training set {(xi, yi) | i = 1, .., n}. To obtain the gradients a
computationally efficient method is back propagation which uses the chain rule of derivation
to compute all required partial derivatives in linear time, see Algorithm 1. These derivatives
are used to make small adjustments to the weights with optimizers like stochastic gradient
descent or AdaDelta (see Section 3.2.4 for details). In general, the learning process is the
modification of the weights with a learning rate γ in some way similar to

w ← w − γ δL
δw

Such an updating of the weights for each sample in the training set is called a training epoch.
This can be done in two different ways concerning the input data: online learning updates the
weights for each training sample individually whereas batch learning updates the weights
just once for a certain batch of training samples. Following [25] using mini-batches instead
of each sample at a time the gradient over the loss gives a better estimate of the gradient over
the whole training set which improves for growing batch size. Also the computation can be
much cheaper and therefore the batch size is an important parameter for the training of neural
networks.
After each epoch the model is evaluated on the validation set to get an estimate for the general
performance of the model. Training stops after a given number of epochs or if the ’best’ per-
formance on the validation set is reached. Since the satisfaction with the model performance
depends on the application it is needed to choose a metric e.g. accuracy to be able to obtain
the settings for the best model.

21

CHAPTER 3. MACHINE LEARNING

With this practice deep learning models are able to learn from very complex datasets and
make predictions for new data based on this knowledge, i.e. prior labelled data sets.

Algorithm 1 The Backpropagation Algorithm for computing the gradients for updating the
weights. (Compare also [42].)
Input:
Sample (x, y), weight vector w, differentiable activation function σ : R→ R
Initialization:
Assume the layers are given as V 0, .., V T where V t = {vt1, .., vtkt} is the tth layer of the
network containing kt units
Define wti,j as the weight connecting the units vtj and vt+1

i

Forward pass:
Set o0 = x

for t = 1, .., T do
for i = 1, .., kt do

set ati =
kt−1∑
j=1

wt−1
i,j o

t−1
j

set oti = σ(ati)

Backward pass:
Set δT = oT − y
for t = T − 1, T − 2, .., 1 do

for i = 1, .., kt do

δti =
kt+1∑
j=1

wtj,iδ
t+1
j σ′(at+1

j)

Output:
For the connections vtj and vt+1

i between all units of the network set the partial derivative to
δtiσ
′(ati)o

t−1
j

3.2.3 Regularization

In this Section we follow mainly the theory from [1] and [16]. Further references are given
directly in the subsections.
As stated in [16] ”Regularization is any modification we make to a learning algorithm that
is intended to reduce its generalization error but not its training error.”. The bias-variance
trade-off we saw in Chapter 3.1 is concerned with finding that model complexity with the
optimal trade-off between bias and variance, e.g. between under- and overfitting. With in-

22

CHAPTER 3. MACHINE LEARNING

creasing complexity the training error of a model decreases and the test error also decreases
at first but then starts increasing again. Therefore, for a low test error, which means high
generalization abilities, the complexity of the neural network has to be regulated. To do so
there are many so called regularization strategies which effectively restrict the parameter
space. In the following we only discuss the ones used for the practical part of this thesis.

Early Stopping

A common method for regularization is early stopping. Here the gradient descent is stopped
after only a few iterations. Without early stopping the number of training epochs performed
is a fixed number and as training continues the model fits more and more to the training
data. The optimal model complexity is reached exactly in that point where the test error
starts increasing again and therefore it would be a good idea to stop training right there. If
the training is done for a fixed number of epochs it can not be assured that this point is even
reached or that it has been surpassed. Therefore the number of training epochs should not
be fixed but what should be the criterion to stop training? As mentioned before, the optimal
trade-off between over- and underfitting is reached exactly when the performance on the test
set starts to get worse again. But using the test set while training to obtain that point would
result in the test data affecting the choice of the model and therefore being not independent
any more. Therefore the validation set is needed in order to find out the point with the
optimal number of training epochs performed: We evaluate the model on the validation data
after each training epoch and study the performance on that set hoping that it is an indicator
for the performance on the test set. A user chosen performance measure then yields the early
stopping point: Assume that accuracy is the selected performance measure. During training
the validation accuracy will usually rise at the beginning and after some (unknown) time start
to decrease again. In order to prevent the process from stopping too early it is common to wait
a certain number of epochs afterwards (patience) to be sure that the performance decrease
is unambiguously clear. If the validation accuracy does not rise again the optimal point is
reached and training stops. In order not to get stuck with a nearly constant performance it
is common to introduce a threshold parameter which defines the minimal improvement the
performance measure needs to obtain to continue training.
A disadvantage when applying early stopping is that a copy of the best parameters and the best
performance score has to be stored for the final selection but this cost is generally negligible.
On the other hand, it has the additional advantage that with stopping the training early it
reduces the computational cost of the training procedure. Since the size of the set of possible
parameters for the model enlarges with the number of training epochs early stopping acts as
a regularizer because it effectively reduces that size to a smaller neighbourhood within the

23

CHAPTER 3. MACHINE LEARNING

initial values of the parameters. As early stopping does not change the underlying training
strategy and is easy to use, it is a very common and also very effective method to regularize
neural networks and improve its performance.

Dropout

Another way to prevent the learning algorithm from overfitting would be the use of ensemble
methods which means to train multiple models instead of only one and use a combination of
their individual results to make a prediction (see also Chapter 3.3.1). Training and evaluat-
ing multiple neural networks is very disadvantageous concerning computational runtime and
memory. Dropout is a technique which provides a way to approximate ensembling of expo-
nentially many neural network architectures in an efficient and easy manner. More precisely,
for neural network architectures, dropout denotes the method of simultaneously training an
ensemble of neural networks that can be constructed by dropping out non-output units from
that base network. Dropping a unit out means that it is temporarily removed from the network
and therefore its incoming and outgoing connections to other units will be removed as it can
be seen in Figure 3.11 and 3.12.

(a) Base network (b) After applying dropout

Figure 3.11: Applying dropout to a neural network. (a) Standard neural network with two
hidden layers. (b) Network constructed by applying dropout using (a) as base network. The
crossed out neurons have been dropped.

In most neural networks this can be done by simply multiplying the output value of the
neuron with zero. It is necessary to define the probability for each layer with which the units
of this layer will be temporarily removed. The decision which units will be dropped is taken
on a random basis. To use the model afterwards for the prediction of new samples it is not
necessary to evaluate all generated sub-models but to just use the base model with all units
present. For all units the outgoing weights have to be rescaled respecting the probability of

24

CHAPTER 3. MACHINE LEARNING

Figure 3.12: (a) The base network. (b) The networks which may be constructed by ran-
domly dropping out one or more units from that base network.

not dropping that unit, this approach is called the weight scaling inference rule. Yet there
is no theoretical proof for the accuracy of this approach for deep nonlinear networks but in
practice it performs really well. Dropout is computationally very cheap but its application is
not that effective if the set of training data is limited. As discussed in [46], using dropout to
train a network and the weight scaling inference rule for its evaluation leads to significantly
lower generalization errors for many different classification problems. Of course dropout
may also be combined with other regularization methods to get further improvements.

Batch Normalization

Batch normalization is not primarily used for regularization but for the improvement of opti-
mization and is motivated by some typical problems arising during the training of very deep

25

CHAPTER 3. MACHINE LEARNING

networks. One such problem is for instance the vanishing gradient problem which is due
to the back propagation of the gradients: The repeated multiplications with derivatives of
the activation function causes the magnitude of the gradients to decrease exponentially with
successive layers and therefore the training process may slow down drastically [22]. Another
problem is the internal covariance shift which is due to the fact that updating parameters
during learning changes the distribution of the layer inputs to subsequent layers which has
a negative impact on training convergence as the training data for later layers is not stable.
Batch normalization on the one hand is able to reduce this effects but on the other hand it
can also regularize neural networks. Further details about vanishing gradients, the internal
covariance shift and the effect batch normalization has in that context can be found in [41].
The idea of batch normalization is to add so called normalization layers between hidden
layers where each unit of such a layer contains two additional parameters βi and γi to be
learned during training. For the exact position of the normalization layer there are two differ-
ent possibilities:

• Post-activation: the normalization is performed just after applying the activation func-
tions to the linear combination of inputs, see Figure 3.13(a).

• Pre-activation: the normalization is performed directly to the linear combination of
inputs and the activation function is applied afterwards, see Figure 3.13(b).

For our applications and in the rest of this chapter we shall focus on the second method as it
is suggested by [25]. So let v1

i , .., v
m
i be the input of some unit i for all the samples 1, ..,m in

a specific batch (of batch size m). Then the normalization is done in the following way:

• At first calculate the mean µi and the standard deviation σi (plus some small ε > 0) of
these samples for the ith unit, so

µi =
1

m

m∑
r=1

vri

and

σ2
i =

1

m

m∑
r=1

(vri − µi)2 + ε

• Then use this values to normalize the unit inputs for all r = 1, ..,m samples in the
current batch:

v̂ri =
vri − µi
σi

26

CHAPTER 3. MACHINE LEARNING

(a)

(b)

Figure 3.13: Batch normalization applied to (a) post-activation values or (b) pre-activation
values.

• Now use the parameters βi and γi to obtain the pre-activation output of the unit i for all
r = 1, ..,m samples in the current batch:

ari = γiv
r
i + βi

• After these steps the activation function is applied to all ari .

Remark: In the case of bias parameters b, these can be ignored for the application of batch
normalization as their effect will be cancelled out by the subtraction of the mean.
The ε which is added to the standard deviation is a very small positive value to avoid zero
division in cases where all vri are the same. As normalizing the mean and standard deviation
of a unit may reduce the expressive power of the network the parameters βi and γi are used
to maintain these aspects and they need to be optimized during training. For the use of
batch normalization in an artificial neural network this procedure is applied to all units in the
network. With the introduction of the new layers which control the mean and the variance
of the distribution of the network input this technique can stabilize the distribution of the
layer inputs and therefore improve the training of neural networks [41]. To be able to test
the network on single samples from the test set without the need of batches it is common to
compute the values of µi and σi in advance by using the whole set of training data and treat
them as constants during testing.

27

CHAPTER 3. MACHINE LEARNING

Since a particular training sample can cause different weight updates depending on the current
batch selection, batch normalization can be seen as a kind of noise added to the training
process; and adding noise is a common way to prevent the model from fitting too much to the
training data. Therefore, batch normalization can not just be used to speed up training and
improve optimization but it also con be seen as a regularization strategy.

Data Augmentation

As already discussed before the performance of machine learning algorithms does increase
with the number of training samples used. But since the generation of more data may be either
time or money consuming a quite easy and effective method is the use of data augmentation.
The idea is to use slightly modified versions of the given data in addition to the original one
for training and therefore on the one hand get more training samples and on the other hand
also obtain slightly translated input which may lead to model invariant to small modifications.
For images as input the data augmentation can be performed in many simple ways: The input
images may be flipped horizontally or vertically, a shift or a elastic deformation may be
applied, the image may be rotated by a certain degree, be cropped or also shaded with a hue.
In Figure 3.14 some image augmentation methods are demonstrated. Since for each input
image a duplicate is obtained in that way a dataset of size n can be extended to a dataset of
size 2 · n. For further information see also [37].

(a) original (b) deformation (c) rotation (d) flip

Figure 3.14: Three different data augmentation techniques applied to an image. (a) shows
the original image, (b) shows a deformed version of the image, (c) shows the 90◦ rotated
image and (d) shows the horizontally flipped image.

3.2.4 Hyper-Parameter Tuning

We briefly summarize the strategy of hyper-parameter tuning as described in [1] and [16].

28

CHAPTER 3. MACHINE LEARNING

The work-flow for machine learning usually comprises the following steps: After selecting
an appropriate machine learning method the next important step is to choose a performance
metric which is useful for the given task (see Section 3.1) to be able to get an estimate for the
abilities of a certain model. Then a decision about the model architecture and parameter set-
ting for the first training with the given data has to be made. If possible a good practice is to
find an already successfully solved task which is similar to the task at hand and start with the
best-performing model as default baseline model. Then the validation set allows to estimate
the generalization abilities of the model after training with the previously chosen performance
measure. This value then is used to compare different machine learning architectures and pa-
rameter settings to single out the one which performs best on the validation data and therefore
will be likely to also perform well on the independent test set. The different model architec-
tures and parameter setting will be determined by the values of the hyper-parameters and
the parameters which can be tuned are dependent of the machine learning method used. For
neural networks common parameters to tune are:

• Number of layers and units: The number of layers and units per layer is a very
important choice for training a neural network. Too many layers or units yields too
high complexity and therefore result in overfitting. But on the other hand having too
less complexity will not provide a way to represent the data well enough and therefore
results in underfitting. A common way is to first start with a model that just slightly
overfits the data and then add regularization methods (see also [8]).

• Regularization: Adding regularization strategies to keep control of the model com-
plexity is one method to reduce overfitting. Regularization methods can be used in dif-
ferent intensities. For example the higher the dropout rate the more units are dropped
out during training and therefore the lower is the chance to overfit. See also Section
3.2.3 for other regularization methods.

• Batch-size: As already mentioned earlier the number of training samples used at once
for updating the weights of a model is also an important parameter. In [26] it is stated
that in practice larger batch sizes may reduce the generalization abilities of the model.
Of course increasing the batch size means using more of the training samples to com-
pute the gradient and therefore getting a better estimate for it. But in [16] it is argued
that most of the optimization algorithms converge faster if they quickly compute ap-
proximate estimates in comparison to slowly compute the exact gradient. Using a
smaller number of samples at the same time also helps to reduce computational mem-
ory costs.

• Optimizer: Like stated before in Section 3.2.2 the optimizer is used to adjust the

29

CHAPTER 3. MACHINE LEARNING

weights of the network with the goal to minimize the derivative of the loss with respect
to the weights. To do so many different optimization methods have been developed
and it is still a topic of research. The target function for the optimization problem
is the training error and the goal is to minimize it with respect to the weights of the
neural network. But since the minimal training error may not lead to the model with
the best generalization abilities due to overfitting machine learning does not completely
follow the scheme of traditional optimization problems. Another issue with machine
learning problems in comparison to traditional optimization problems is that the loss
usually consists of a sum over all the training examples and in practice optimization
algorithms for machine learning compute the weight updates according to the loss just
over a subset of the training data, see item ’Batch-size’ above. Optimization algorithms
may use all the data samples at once or also just single samples but most algorithms
are in-between and use mini-batches drawn i.i.d from the data to update the weights.
With taking the average gradient of the examples in a mini-batch it is possible to get an
unbiased estimate of the gradient. These methods are called mini-batch or stochastic
algorithms and common examples are:

– Stochastic Gradient Descent (SGD): The typical example for a machine learn-
ing optimizer. For each mini-batch of m samples drawn i.i.d from the underlying
data distribution the gradient estimate is calculated by

g =
1

m
∆w

∑
i

L(yi, f(xi, w))

and then using the learning rate γ the update of the weights is performed by

w = w − γg.

The learning rate is a very important parameter for the SGD algorithm and in
practice it is common to use not a fixed learning rate but to gradually decrease
the learning rate over time. As this algorithm can be slow there often is used the
momentum method additionally to fasten the learning process. A variable v is
introduced which gives the direction and speed at which the weights are updated
and is set to

v = αv − γg

where α ∈ [0, 1) is a hyperparameter determining how quickly the decay of the
previously contributing gradients is. Therefore the larger α is the more previous
gradients influence the current direction. The weights are then updated by

w = w + v.

30

CHAPTER 3. MACHINE LEARNING

There are also special momentum methods, e.g. the Nesterov momentum which
evaluates the gradient of the loss function after the current parameter v is applied
to the weights. Therefore the use of Nesterov momentum may improve the con-
vergence rate.

– Adam and Adadelta: It soon has been realized that the learning rate is one of
the most important but also hard to set values. On the one hand too small val-
ues yield a very slow weight update and will take long to reach an acceptable
loss but on the other hand too large values will update the weights too much and
maybe an acceptable loss will never be reached. The idea is that parameters with
large partial derivatives tend to be oscillating while parameters with small partial
derivatives are more consistent but move in the same direction. Therefore, algo-
rithms were developed which individually adapt the learning rates for different
parameters. The Adam optimizer for example introduces biased first and second
moment estimates of the historical gradients which are decayed in each iteration
and then used to scale the weight update δw. The Adadelta optimizer alleviates
the challenge of manually choosing a learning rate since it is set according to
an exponentially decaying average of the squared gradients. For further reading
about the Adadelta method see also [50].

Following [1] there are different kinds of methods for testing certain combinations of all
kinds of hyper-parameters. The most common method is called grid search, here for each
hyper-parameter which should be optimized a set of values is selected. Then for all possible
combinations of those values a model is trained and then evaluated on the validation set to
find the best setting. Of course this method has the big problem that by trying out many
values for the hyper-parameters the number of possible combinations increases rapidly and
therefore will take very long. Applying tricks like using bigger step-sizes in the parameter-
values or sample them randomly with a certain distribution in a given range can help to reduce
the search range in a fast way. Afterwards the set of interesting values can be scaled down
to a smaller range and finer step-sizes can be chosen. Here a common method for certain
hyper-parameters is also to sample not the values itself with a certain distribution but their
logarithms. Following [16], there is also the possibility to manually tune the hyperparameters
i.e. to re-set them manually after analyzing the model results. This of course requires a full
understanding of the values and the relationship between the hyperparameters, the training
and generalization scores and the computational resources and therefore is not very common
to use.
To examine whether a model is over- or underfitting on the training data and how to continue
the model selection process it is important to always keep a look at the difference between

31

CHAPTER 3. MACHINE LEARNING

the performance scores on the training and on the validation data. At first the performance
on the training set should be observed. If it is poor the model is not complex enough to fit
to the data and therefore the model complexity should be increased. If this does not improve
the training scores then the quality of the data may be the problem. If it is too noisy or does
not contain the features needed for the task then new and cleaner data should be collected.
In the case that the performance on the training data is well enough it is time to study also
the score of the validation set. If the performance is much worse here the model seems to be
overfitting on that training data. Then possible actions would be on the one hand to remove
layers or units or to add regularization such as dropout. On the other hand, it can also be
useful to gather more data but in practice the possibility to do so strongly depends on the cost
and feasibility of data generation.

Nested Cross-Validation for Parameter Selection

As already mentioned before cross-validation concerns the splitting of data into training, val-
idation and test sets, see Chapter 3.1. Using cross-validation as described aims to get a better
estimate of the generalization abilities of a model for the given kind of data. But it is also
possible to use cross-validation in a nested way to additionally get a better estimate for the
performance on the validation set which is important for the selection of the best hyperpa-
rameters: After splitting the data into k folds in advance and putting aside always one fold
for testing, for each of the k different training-test data-splits the following is done: The re-
maining data is again split into k′ folds and for j′ = 1, .., k′ the j′th fold is used as validation
set and the remaining data is used for training. Doing this for allj′ folds the validation per-
formance is calculated as the mean of the obtained ones. This value can then be used for
choosing the best setting of model parameters. After having chosen the best parameters for
each of the j training-test splits the models can again be evaluated on the appropriate test
set. Summarizing one can say that the inner cross-validation is for the hyperparameter se-
lection whereas the outer cross-validation is used for computing an unbiased estimate of the
generalization error.
The greatest advantage of the nested cross-validation is the better estimation of the general-
ization abilities of the underlying model and its hyperparameter search. Without using nested
cross-validation for choosing the best hyperparameters the model will be biased to the dataset
which can yield overly-optimistic performance scores. But on the other hand nested cross-
validation is computationally very costly as it requires k ∗ k′ trainings and as the splitting is
done in a nested way, the dataset has to be big enough to still contain enough samples for
training in the inner loop. Therefore it is useful to check for the need of cross-validation for
the given task by analyzing the variance of results for different data splitting.

32

CHAPTER 3. MACHINE LEARNING

3.2.5 Convolutional Neural Networks

We briefly introduce some basic theory of convolutional neural networks following [1], [16]
and [36].
Convolutional neural networks (CNN) are similar to traditional artificial neural networks
but are primarily used for data with a grid-like topology like images as this input would
easily overflow the memory and computational power if used in traditional networks. Assume
there is given a 64 × 64 image with three color channels then the number of weights to
be learned on a single neuron in the first layer would be given by 12288 (64 · 64 · 3), and
this is not even a big image. Therefore some kind of compressed or sparse representation
of the input is needed. Like the structure of traditional neural networks also convolutional
neutral networks are inspired by the nature and the idea was already motivated in [24] with
the examination of neurons in a cats visual cortex. With images as inputs to the net, each
layer of the convolutional network is three dimensional with the two image dimensions and
number of color channels as the depth, which is for example 3 for RGB and 1 for greyscale
images. Such networks consists of three different kinds of layers which are stacked to form
a convolutional neural network: convolutional layers, pooling layers and traditional fully
connected / dense layers. The input layer of the network will hold the pixel values of the
image. For short a convolutional layer uses the so-called convolution operation instead
of the matrix multiplication shown in Section 3.2.1 but also applies an activation function
(usually ReLU) afterwards. The pooling layer is used to downsample the input to reduce the
number of parameters to be learned. The dense layers are then used in the end with activations
appropriate to the required output. See Figure 3.15 for an outline of a possible CNN.

Figure 3.15: Using the image pixels as input and stacking a convolutional layer, a pooling
layer and fully connected layers yields a basic convolutional neural network.

Convolutional Layers

As already mentioned before convolutional layers use the so-called convolution operation. In
general, this is defined as

s(t) = (x ∗ w)(t) =

∫
x(a)w(t− a)da

33

CHAPTER 3. MACHINE LEARNING

for two real-valued functions x(.) and w(.). For neural networks the first function represents
the input which is usually a multi-dimensional data array and the second function is a certain
filter, often called kernel which is usually a multi-dimensional array of parameters to be
learned. The kernel has always the same depth and its spatial dimensions are usually squared
(kernel size) and typically much smaller than those of the data array to which it is applied.
The output is called a feature or feature map. To use the convolution operation for a finite
number of points over more than one dimension (see Figure 3.16) as it is needed for example
for a 2-dimensional image I as input (in this case the kernel K may also be 2-dimensional)
with dimensions m, n the operation can be extended to

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n)

As it can be seen in Figure 3.16 the convolution operation basically places the filter over all
possible positions in the image and and performs a dot product between the filter and the
underlying image values. Consider again the number of weights which have to be learned
for a given network layer: Assume again a three channel 64 × 64 pixel image. Applying a
filter with kernel size 6 × 6, the number of weights for each neuron in the first layer will be
6 ·6 ·3 = 108 instead of the 12288 required for fully connected layers. The output of applying
the convolution operation to a data array is the so-called feature map or activation map. Each
of the different filters operates as a pattern-detector and tries to detect a certain spatial feature
in the image. For an example of a horizontal-edge detector see Figure 3.17.
Other filters will be able to detect other kinds of patterns in the image and therefore it follows
that for a larger number of different filters the complexity of patterns detected increases.
Concerning the already used term to apply the filter to all ’possible’ image patches, this
usually means to use just patches that do not cross the image border, as it is done in Figure
3.16. This will of course shrink the size of the data array in the output and to avoid this (zero)
padding can be used. This technique basically adds a frame of zero values to the image and
therefore makes it possible to maintain the size of the data array in the output, for further
information see [1]. One can also define the stride, this determines the offset of consecutive
image patches in order to decrease the overlap. For example in Figure 3.16 no padding is
used and the stride is set to 1. When using convolutional layers an important choice is on
the one hand the number of filters in a certain layer and on the other hand their kernel-size.
As stated in [1] for efficient progressing the number of filters in a layer is often chosen to be
a power of two and the kernel size is usually small like 3 or 5. Like fully connected layers,
convolutional layers can also use bias values. The activation function used for convolutional
layers is usually the ReLU activation as it was shown in [27] that this will fasten training and
also increase the performance.

34

CHAPTER 3. MACHINE LEARNING

(a) (b)

Figure 3.16: An example for a 2-D convolution operation. The input can be seen as a 2-
D image. (a) The convolution filter / kernel is then applied to all possible image patches
to calculate the output. (b) illustrates how to apply the filter to all possible positions of the
input image.

Max-Pooling Layers

After applying the convolution operation and the activation function usually another kind of
layer is used for CNNs: the pooling layer. The pooling layer replaces the output at a certain
position with some summary of the outputs of the neighbourhood. For example one common
method is the max-pooling, where the maximal value of a given neighbourhood is used as
new value, see Figure 3.18. Like in Figure 3.18 it is common to use 2 × 2 as pool-size for
max-pooling layers and the stride is usually set to that pool-size, but it can sometimes also be
useful to use slightly overlapping areas.
The goal of the pooling layer is on the one side to further increase the number of parameters
to be trained but on the other hand it also helps to make the network translation invariant. This
means that having a slightly translated input the output of the pooling layer do not change,

35

CHAPTER 3. MACHINE LEARNING

Figure 3.17: (a) The filter can be used to find horizontal edges in an image. Applying it to
all possible image patches it yields the highest activation for perfectly horizontal lines and
zero activation for perfectly vertical lines. For other edges the activation will be intermedi-
ate. With this method the output is a feature map of the image which shows the positions of
horizontal edges in the image.

Figure 3.18: The max-pooling with size 2 × 2 takes the gives the maximal value of each
2× 2 image patch as new output (from [61]).

see Figure 3.19.
Stacking these kind of layers several times creates different CNN architectures which deter-
mine how the layering could be. Some popular approaches are for example AlexNet [27],
VGGNet [44] or ResNet [20]. Convolutional neural networks are one of the most successful
and frequently used neural network types. They are used for image classification, object de-
tection or even text recognition and became really popular as the winner of many ImageNet
contests [40].

36

CHAPTER 3. MACHINE LEARNING

Figure 3.19: Max-pooling makes the network translation invariant.

3.3 Selection of Feature-Based Machine Learning Methods

To compare the results of deep learning to results from of standard machine learning meth-
ods we choose two common techniques, namely random forest and support vector machine.
The main difference between these standard methods and deep learning is the input needed
for training and classification. For deep learning the input usually is the raw data like time
series or images. But for most of the other machine learning methods there is the additional
need to manually extract features from the raw data and then input just the vector of fea-
tures. Therefore, deep learning has the great advantage that the specificities of each class
are extracted automatically from the raw data during learning and so the network determines
and generates the features itself. On the other hand, it can never been said for sure that the
network learns exactly what it should learn as there is no insight to the nature and variety of
determined features. For example there could be a small dot in the left corner of each image
belonging to a certain class due to some recording fault which does not appear on the images
of the other class. Then the network may learn just the appearance of this point as indication
for the first class and gives a high prediction score while the important features which really
describe each class are not used for the decision. Because of this there is also an advantage
in selecting the features manually and to have the opportunity to give the machine learning
algorithm just those values which are important for the given classification task.

3.3.1 Random Forests

This Section is following [15] and [42] in the main ideas about random forests.
Random forest is an ensemble method. These methods are very common in machine learn-
ing and it means that instead of a single model, multiple such models are trained simultane-
ously; to make predictions the results of all these models are used (for example averaged or

37

CHAPTER 3. MACHINE LEARNING

with voting). Random forests consist of decision trees. A decision tree has a tree structure
with a root node, in-between nodes and leaves and it classifies a sample x by travelling from
the root node to a leaf. At each node in the tree the successive node is chosen with some rule
based on the features of the training samples. A leaf contains a specific label which is then
associated to the sample x. Decision trees are primarily used for classification but can also
be extended for regression tasks.
During the training phase the tree is constructed. Let S = {(xj, yj) | j = 1, ..n} be the
set of n training samples where xj ∈ Rd and yj ∈ Rk i.e. each sample contains d features
and there are k different labels given. Starting from the root node the successive nodes are
determined by splitting the set of training samples S based on one or some of the features
of the samples or on pre-defined splitting rules. A very common splitting rule for numerical
features is to find a threshold for a single feature and for the successive nodes splitting the
dataset according to that threshold. Assume we are given numerical features. For applying
the threshold c to the ith feature the data splitting would deliver the subsets

SL = {(x, y) ∈ S | xi < c} and SR = {(x, y) ∈ S | xi ≥ c}

For categorical features it is either possible to make a binary split i.e. check for the label c in
the ith feature, obtaining

SL = {(x, y) ∈ S | xi = c} and SR = {(x, y) ∈ S | xi 6= c}

or to make a split according to the entire feature which means making a split for all possible
labels of the ith feature obtaining

Sj = {(x, y) ∈ S | xi = cj}

Compare also Figure 3.20. Note that the case of numerical features can be reduced to the case
of binary features by defining a set of thresholds Θ s.t. for given sorted values x1,i ≤ .. ≤ xm,i
of the ith feature Θj,i ∈ (xj,i, xj+1,i) and splitting like shown before.
In each step there are of course many different kinds of splits possible and the decision which
split is performed is determined by some gain measure. For this all possible splits are ex-
amined and then the split with the maximum splitting criterion is performed. That means
the data is divided into subsets according to the chosen split and then for all newly generated
subsets which are not empty there is generated a new node and the procedure is repeated.
One common algorithm for decision trees is the Iterative Dichotomizer 3 algorithm, short
ID3 algorithm. In the following pseudocode (Algorithm 2) we assume just binary features,
i.e. X = {0, 1}d. (This algorithm can be used equivalently for numerical features as they
can be seen as binary features). The algorithm is recursive with the initial call ID3(S, [d])

38

CHAPTER 3. MACHINE LEARNING

Algorithm 2 The ID3 algorithm, following [42].
Input:
Training set S, feature subset A ⊆ [d]

if all examples in S are labelled with 1:
return a leaf 1

end if
if all examples in S are labelled with 0:

return a leaf 0
end if
if A = ∅:

return a leaf whose value = majority of labels in S
else

Let j = argmaxi∈AGain(S, i)

if all examples in S have the same labels:
return a leaf whose value = majority of labels in S

else
Let T1 be the tree returned by ID3({(x, y) ∈ S : xj = 1}, A j).
Let T2 be the tree returned by ID3({(x, y) ∈ S : xj = 0}, A j).
Return the tree:

end if
end if

39

CHAPTER 3. MACHINE LEARNING

(a) (b) (c)

Figure 3.20: (a) For numerical features it is common to apply a threshold c to one of the
feature values. For categorical features is is common to make either a binary split (b) or to
make a split separating all possible feature values (c).

and it returns a decision tree for the set S of training samples. A possible realization of the
procedure Gain(S,i) will follow afterwards.
To determine the best split for a certain state of the tree construction some gain measure
is needed. For this we follow [5] and assume again binary features. Define an impurity
function i(t) which measures the goodness of a node t and reaches its maximum if the
samples are uniformly distributed between the classes and its minimum if all samples belong
to one class. So the smaller the impurity of a node, the ’purer’ (regarding the different labels
assigned to the remaining samples) is that node and therefore the goal is to minimize it with
splitting. To measure the goodness of a split the decrease in impurity at node t for a split s is
calculated as follows:

∆i(t, s) = i(t)− pLi(tL)− pRi(tR) (binary split)

∆i(t, s) = i(t)−
∑
j

pji(tj) (split of entire feature)

where tL, tR or tj are the new nodes generated by the split s and pL, pR or pj are the propor-
tions of samples belonging to the new nodes. With T̄ the current set of terminal nodes and
p(t) the proportions of samples in node t define the tree impurity I(T) =

∑
t∈T̄ i(t)p(t). Now

selecting the splits which minimize this is equivalent to selecting the splits which maximize
the decrease in impurity ∆i(t, s). The most common impurity functions for classification are
the following:

• the Gini criterion:

i(t) = 1−
K∑
k=1

p(k|t)2

• the Shannon entropy:

i(t) = −
K∑
k=1

p(k|t)log(p(k|t))

40

CHAPTER 3. MACHINE LEARNING

Here p(k|t) is the proportion of samples labelled with class k in the node t and can be inter-
preted as an estimated probability of class c in node t.
Of course it would be possible to split until each sample has its own leaf, this would end
in perfect scores on the training set. But the generalization abilities of the model could be
poor as in this case the model may have overfitted to the data probably containing noise.
Because of this there is the need to define some rules when to stop the further growing of the
tree to find the optimal trade off between tree complexity and generalization abilities. Some
common stopping criteria to prevent overfitting are the following [31]:

• Fix the value Nmin to determine the minimal number of samples which need to be in a
node. So if a node t contains less than Nmin samples it is set as terminal node.

• Fix the value dmax which determines the maximal depth the tree can reach.

• Fix a threshold β and monitor the decrease in the impurity measure. If the total decrease
p(t)δi(s∗, t) < β for a node t with remaining sample set s∗ then t is set as terminal
node.

• Fix the value Nleaf to determine the minimal number of samples which need to be
contained in a leaf. So if there is no split s.t. all resulting nodes will contain at least
Nleaf samples the node is set as terminal node.

The strategy of early stopping for decision trees is often also called pre-pruning.
Another strategy to avoid overfitting for decision trees is post-pruning [42]. Here a much
too large tree is grown and afterwards it is pruned. This is usually performed in a bottom-up
walk through the tree where each node might be replaced with one of its subtrees or with a
leaf with the goal to minimize the generalization error.
A reduction of the risk of overfitting can also be achieved by using many decision trees at once
as an ensemble method [42]. A random forest is a classifier consisting of many individually
constructed decision trees. The prediction for a new data sample is made by navigating it
through each tree and in the end averaging the results. Random forests are not pruned.

3.3.2 Support Vector Machines

In this Section we will briefly summarize some basic theory about support vector machines
following the notations and wordings as introduced in [42].
The support vector machines (SVM) are very useful and powerful machine learning tech-
niques for learning a classification problem with high dimensional feature spaces. It is
used primarily for binary classification but can also be extended to more than two classes.

41

CHAPTER 3. MACHINE LEARNING

The idea of SVM is the following: the d−dimensional sample features are represented in a
d−dimensional space and the goal is to find a large margin separator. A separator is a hyper-
plane which separates the data such that all the samples are on the correct side of the hyper-
plane. As there may be many such hyperplanes the idea is to choose that one where the sam-
ples have the greatest distance to it i.e. the margin is large. So let S = {(xi, yi) | i = 1, ..n}
be the set of n samples where xi ∈ Rd for d features given and yi = {+1,−1}. Then the set
of samples S is linear separable if there exists w ∈ Rd and b ∈ R such that for all i = 1, .., n:

yi = sign(〈w, xi〉+ b)

which can be rewritten as
yi(〈w, xi〉+ b) > 0

The hyperplane separating the data samples is then given by

(〈w, xi〉+ b) = 0

For any separable set of samples there are many separating hyperplanes and therefore the
question is which one to choose, see Figure 3.21.

(a) (b) (c)

Figure 3.21: (a) There are usually many separating hyperplanes for a set of samples which
should be classified to red, green. (b) and (c) show that there are hyperplanes with a smaller
and larger distance to the points. Intutially one would choose the one with the larger dis-
tance, therefore (c), as that hyperplane which separates the data points better.

For this the margin is considered. The margin of a separating hyperplane is the minimal
distance of the boundary function (〈w, xi〉+ b) = 0 to all data points. Having a small margin
means that slightly moving some data points may lead to a set which is no longer separated
by the hyperplane. But the higher the margin the more likely it is to be able to still separate
the data after slightly displacing some points. In terms of the classification problem this

42

CHAPTER 3. MACHINE LEARNING

means that with data points which are different from the training samples the probability to
have them on the right side of the hyperplane (i.e. in the correct class) increases for a larger
margin as they can vary more. For the next steps we follow [2].

Claim. The distance between a point x and the hyperplane defined by (w, b) is given by
|〈w,x〉+b|
||w|| and hence the margin is given by

min
i=1,..,n

|〈w, x〉+ b|
||w||

Now fix the scaling of w by assuming mini=1,..,n |〈w, x〉 + b| = 1, then the margin becomes
simply 1

||w|| and
〈w, xi〉+ b ≥ 1 for yi = +1

and
〈w, xi〉+ b ≤ −1 for yi = −1

For this see Figure 3.22.

Figure 3.22: The margin of a separating hyperplane.

Therefore the margin maximization problem is given by

max
w,b

1

||w||
s.t. yi(〈w, xi〉+ b) ≥ 1 for all i = 1, .., n

(3.3)

Since actually we are interested in the values of w and b which maximize the margin w.r.t the
given constraints and not in the maximal value itself we define the arg max.

43

CHAPTER 3. MACHINE LEARNING

Definition. For a function f : X → Y the arg max is defined by

arg max
x

f(x) = {x | x ∈ X ∧ ∀y ∈ X : f(y) ≤ f(x)}

The definition of arg min is in complete analogy

arg min
x

f(x) = {x | x ∈ X ∧ ∀y ∈ X : f(x) ≤ f(y)}

Claim. For f(x) > 0 the following holds

arg min
x

f(x) = arg max
x

1

f(x)
.

Proof. Assume f(x) > 0. Then

arg min
x

f(x) = {x | x ∈ X ∧ ∀y ∈ X : f(x) ≤ f(y)}

= {x | x ∈ X ∧ ∀y ∈ X : 1 ≤ f(y)

f(x)
}

= {x | x ∈ X ∧ ∀y ∈ X :
1

f(y)
≤ 1

f(x)
} = arg max

x

1

f(x)
.

Claim. For f(x) > 0 the following holds

arg min
x

f(x) = arg min
x

f(x)2.

Proof. Assume f(x) > 0. Then

arg min
x

f(x) = {x | x ∈ X ∧ ∀y ∈ X : f(x) ≤ f(y)}

= {x | x ∈ X ∧ ∀y ∈ X : f(x)2 ≤ f(y) ∗ f(x)}
= {x | x ∈ X ∧ ∀y ∈ X : f(x)2 ≤ f(y)2} = arg min

x
f(x)2

since f(x) ≤ f(y) for all y ∈ X .

Claim.
arg min

x
f(x) = arg min

x

1

2
f(x)

Proof. Since 0 < 1
2
< 1 it follows that

arg min
x

f(x) = {x | x ∈ X ∧ ∀y ∈ X : f(x) ≤ f(y)}

= {x | x ∈ X ∧ ∀y ∈ X :
1

2
f(x) ≤ 1

2
f(y)}

= {x | x ∈ X ∧ ∀y ∈ X :
1

2
f(x) ≤ f(y)} = arg min

x

1

2
f(x)

44

CHAPTER 3. MACHINE LEARNING

Since ||w|| > 0 holds for allw ∈ Rd we can apply the claims to (3.3) and obtain arg maxw,b
1
||w|| =

arg minw,b
1
2
||w||2. Therefore, the original problem can be rewritten equivalently as a convex

quadratic optimization problem with linear constraints which has one unique solution.

min
w,b

1

2
||w||2

s.t. yi(〈w, xi〉+ b) ≥ 1 for all i = 1, .., n

(3.4)

For this it was explicitly assumed that the data samples ARE linearly separable which means
that there exists such a separating hyperplane. In that case the classifier is called a hard
margin classifier. But in most applications the samples will not be separable exactly by a
hyperplane and in that case the optimization problem will have no solution. To solve this
problem an idea is to relax the constraints with the use of so called slack variables ξi ≥ 0 in
the following way (soft margin classifier):

yi(〈w, xi〉+ b) ≥ 1− ξi for all i = 1, .., n

Now the optimization problem (3.4) can be extended to

min
w,b

1

2
||w||2 +

C

n

n∑
i=1

ξi

s.t. yi(〈w, xi〉+ b) ≥ 1− ξi for all i = 1, .., n

and ξi ≥ 0

Here C > 0 is a penalty parameter controlling the size of the slack variables. Using the
Lagrangian with Lagrange multipliers αi, βi ≥ 0 and defining an n × n matrix H with
entries Hi,j = yiyj〈xi, xj〉 and the vectors α and β consisting of αi and βi the following
dual optimization problem can be obtained:

min
α

1

2
αTHα− αT e

s.t. αTy = 0

and 0 ≤ αi ≤
C

n
For the exact computation see [2].
Up to now there were just linear models considered but in some cases non linear models may
be more appropriate. Therefore, it is common to use the kernel trick which maps the input
data to a higher dimensional feature space i.e. a Reproducing Kernel Hilbert Space (RKHS)

45

CHAPTER 3. MACHINE LEARNING

via a feature map φ. Then Hi,j = yiyj〈φ(xi), φ(xj)〉 and we can still solve the optimization
problem and with the optimal α obtain the decision boundary. With

w =
n∑
i=1

αiy
iφ(xi)

the decision boundary 〈w, x〉+ b is given by

n∑
i=1

αiy
ik(xi, x) + b

where k is the kernel associated with the RKHS, (so k(x, x′) = 〈φ(x), φ(x′)〉 for the feature
map φ). For the computation of b there is the need to look at the different types of sample
points, see Figure 3.23.

Figure 3.23: In this case three samples are given which lie exactly on the borders. Theses
are the support vectors. Inbetween the borders there are some margin errors and on the out-
side there are the well classified points which do not affect the decision boundary.

• Margin errors: If yi(〈w, xi〉 + b < 1 there must be ξi > 0 and hence βi = 0 and
αi = C

m

• Well classified points: If yi(〈w, xi〉 + b > 1 then ξi = 0 and αi = 0 and the points do
not affect the decision boundary.

46

CHAPTER 3. MACHINE LEARNING

• Support vectors: If yi(〈w, xi〉 + b = 1 then the points lie exactly on the decision
border. Therefore ξi = 0 and 0 ≤ αi ≤ C

n

Therefore we can compute b by taking the average of

yi −
∑
i

〈w, xi〉

over all support vector points.
Common choices for the kernel are [10]:

• Linear Kernel: k(x, x′) = 〈x, x′〉

• Polynomial Kernel: k(x, x′) = (γ〈x, x′〉+ c)d

• RBF Kernel: k(x, x′) = exp(−γ||x− x′||2)

47

4 Deep Learning for OCT-Images

4.1 State of the Art

Recent articles on medical studies report on the successful application of deep learning on
OCT-images for biomedical issues. Since the main field of application for this imaging tech-
nology is ophthalmology most of the applications of deep learning for OCT-images are in
this field. Many papers cover the analysis of images of the retina to discover diseases like
Diabetic Macular Edema (DME) [3], glaucomatous damage [33] or age-related macular de-
generation [29]. As deep learning has been a useful and successful method for the detection
of these diseases, we will extend the application of this machine learning technique to OCT-
images for the classification of technical materials in an industrial context. We study the
automatic classification of different materials represented by different color pigments in 3D-
printed poly-lactate-acid (PLA) objects. The second task is the inspection of materials to
automatically distinguish between coated and uncoated areas on different kinds of papers.
We compare the results of deep learning with results obtained by other machine learning
techniques namely random forest and support vector machine.

4.2 The First Task – ’Material’ Classification

4.2.1 Problem Description

The first task has been the classification of OCT-images of different objects with respect to
their ’material’. The objects have been 3D-prints from the base material poly-lactate-acid
(PLA) and the different ’materials’ were represented by different color pigments in the PLA
matrix. The goal has been to train a model which is able to distinguish between four different
materials – represented by the color pigments of green, grey, red and transparent color – with
only their (greyscale) OCT-image as an input. For each color two differently shaped objects
have been printed, a small dovetail-shaped one and a larger wedge. The objects have been
designed in such a way that they include many different kinds of structures to record, such as

48

CHAPTER 4. DEEP LEARNING FOR OCT-IMAGES

plain surfaces, slopes of 5◦ and 45◦, interior defects and surface defects. Figure 4.1 provides
a short glimpse on the objects. Because of the different scattering of the color pigments
included, human experts can in most cases distinguish the OCT-images, compare also Figure
4.2. One can see that the green material gives coarse images where the printed layers are
hardly visible. The grey material absorbs the light very fast, the structure is fine and the
layers are not apparent. For the red material the images look also very fine but the light is not
absorbed as quickly as for the grey material and the layers are very well visible. And finally
the transparent material reflects the light mostly on the surface and the layers whereas the
internal structure is nearly black.

(a) (b)

Figure 4.1: 3D-print objects: (a) a wedge (short k = ”Keil”) and (b) a dovetail (short s =
”Schwalbenschwanz”). Each object is given in four colors: green, grey, red and transparent.

(a) green (b) grey (c) red (d) transparent

Figure 4.2: The OCT-images of the different colored objects are well distinguishable in
most of the cases.

For the investigation a total of 12800 images (dimension 512 × 1000 pixels) have been
recorded, evenly distributed among the four classes. The recordings were done on differ-
ent spots on the objects and with and without defects. See Table 4.1 for the distribution of
images and Figure 4.3 for OCT images of the different areas on the objects. One important
issue for this task has been that the various surfaces and the defects should not confuse the

49

CHAPTER 4. DEEP LEARNING FOR OCT-IMAGES

material classification s.t. for example all recordings in Figure 4.3 should have been classi-
fied as ’grey’ even though the surface looks quite different. The recordings were done in a
manner to prevent from a main problem of neural networks: learning the false features. To
get the data as clean as possible the position of the object-surface in the OCT image has been
alternated in height for all classes. Furthermore on each recording-day all classes have been
recorded for a certain object-area to exclude possible changes in the ambient light or OCT-
system settings. The final data set has been randomly split into 6400 training samples, 3200
validation samples and 3200 test samples. Finally three different machine learning meth-
ods have been applied for solving the classification task: deep learning, random forests and
support vector machine.

green grey red trans sum green grey red trans sum
plain 500 500 500 500 2000 500 500 500 500 2000

5 degree 250 250 250 250 1000 250 250 250 250 1000
other slopes 500 500 500 500 2000 400 400 400 400 1600

interior defects - - - - - 400 400 400 400 1600
surface defects - - - - - 400 400 400 400 1600

sum 1250 1250 1250 1250 5000 1950 1950 1950 1950 7800

Table 4.1: The numbers of samples recorded for the different settings. The left table sum-
marizes the data about the small, dovetail-shaped object and the right table is about the
larger, wedge-shaped object. Here ’other slopes’ means that the record was not made in the
direction of the steepest descent (5 degree or 45 degree) but in some other directions.

(a) interior defect (b) surface defect (c) 5 degree slope (d) 45 degree slope

Figure 4.3: The recordings of different surfaces and defects.

4.2.2 Deep Learning

Having images as input for the given task the most straightforward idea has been to use a
convolutional neural network architecture. As suggested in [16] we have started the analysis

50

CHAPTER 4. DEEP LEARNING FOR OCT-IMAGES

with a CNN model architecture that is known to perform well for one of the most common
machine learning problems: the MNIST dataset [55]. Using the Keras library [54] the imple-
mentation to start with has been taken from [51]. Implementing a classifier for the MNIST
dataset the number of classes is 10, namely the numbers from 0 to 9. The training images are
provided in size 28× 28 pixels. For the given task the number of classes has been changed to
four and the image dimensions have been reduced to 64 × 125 pixels to maintain the image
proportions while preventing memory overflow. The need of cross-validation has been tested
by observing the variance of results for different data splits, see Chapter 4.2.5. To prevent
overfitting some data augmentation - namely the horizontal flip - and additionally early stop-
ping has been used from the beginning. As argued in Chapter 3.1 the test set of 3200 images
was put aside right away and the tuning of the model architecture and hyperparameters has
been performed with the 6400 training samples and 3200 validation samples. The different
settings include:

1. Add one or two convolutional layers.

2. Try different numbers of units in the layers, taking multiples of 20 from 20 to 400.

3. Use batch normalization after all convolutional and dense layers, following the imple-
mentation of [52].

4. Vary the batch size, taking powers of two in the range of 16 to 512.

5. Tune the dropout rates for convolutional and dense layers, going from 0 to 1 with step-
size 0.05.

6. Change the optimizer and try Adadelta, Adam and Stochastic Gradient Descent (with
Nesterov momentum).

As for this task the distribution of samples between the classes has been balanced and none
of the classes has been more important than the others the most appropriate performance
measure is accuracy. Choosing a random parameter setting the network has been trained on
the training data and afterwards evaluated on the validation data. The training for a certain
parameter setting has taken between five and ten minutes in average when performed on
the GPU. The scores of many different settings have then been compared to select the best
parameter combinations. After training many different models and adjusting the parameter
ranges a few times the parameter setting which reaches the best validation accuracy has been
the following, see also Figure 4.4:

Ad 1.) One convolutional layer has been added to the architecture based on the MNIST exam-
ple from [51]. So now there have been three convolutional layers in the network.

51

CHAPTER 4. DEEP LEARNING FOR OCT-IMAGES

Ad 2.) As the standard setting of units per layer has still been the best one, we have used 32
units in the first convolutional layer, 64 units in the second and 128 in the third one.
The first dense layer has had 256 units and the second of course just the number of
classes which is four.

Ad 3.) Having used batch normalization, as it has improved performance and training time.

Ad 4.) The batch size which has been giving best scores for the given task is 32.

Ad 5.) For convolutional layers the dropout has been performing best with dropout rate at 0.1
and for the dense layer with dropout rate at 0.05. Therefore, 10% of the convolutional
layer’s units and 5% of the dense layer’s units have been dropped out randomly.

Ad 6.) The best optimizer for the given task has been Adadelta with its default settings, see
[54].

Figure 4.4: The network architecture of the final model.

This parameter setting has reached a training accuracy of 98,91% and a validation accuracy
of 99,59%. On the independent test set an accuracy of 99,47% has been reached, this cor-
responds to just 17 false predicted images out of 3200. A closer look on these misclassified
images shows that the problematic cases have been objects with red and green color particles.
For them on some special areas of the objects the classes look quite similar and can also not
be easily distinguished by an expert. See Figure 4.5 for false predicted images of the classes
’red’ and ’green’.
To visualize the progress of learning during the epochs it is common to plot the accuracy
scores of training and validation set for each epoch. As the chosen classifier uses batch
normalization the maximum of the validation accuracy has been reached very quickly and
was starting decreasing again but because of early stopping the classifier which is saved has
been the one with the maximal validation accuracy. Without batch normalization the training
has usually taken longer and because of that the accuracy curve looks nicer, but in that case the
validation accuracy has not reached as nice results. See Figure 4.6 for two possible accuracy
curves with and without the use of batch normalization.

52

CHAPTER 4. DEEP LEARNING FOR OCT-IMAGES

(a) (b)

Figure 4.5: Two examples of OCT-images which are wrongly predicted by the classifier. (a)
shows an image of an object with green color pigments which is classified as red. (b) shows
an image of an object with red color pigments which is classified as green.

(a) (b)

Figure 4.6: The training and validation accuracy curves of two different classifiers. (a) is
the training of the finally chosen classifier with batch normalization. As described before
the maximal validation accuracy has been reached very early and then starts zigzagging. (b)
shows the training of a classifier without batch normalization, in this case it has taken nearly
twice as many epochs to reach the maximal validation score but the curve looks much nicer
here. It can be seen here that when training started both training and validation scores first
have been quite bad but with more and more epochs the accuracies have raised until at some
point they have started decreasing again. That is the point where further training has been
stopped.

53

CHAPTER 4. DEEP LEARNING FOR OCT-IMAGES

(a) First Convolutional Layer

(b) Second Convolutional Layer

(c) Third Convolutional Layer

Figure 4.7: Some filters of the convolutional layers i.e. the images certain units of convolu-
tional layers have been maximally responsive to. It can be seen that the later layers combine
the structures learned in earlier layers and therefore units of the third convolutional layer
have much complexer structures than the units of the first convolutional layer.

Filter Visualization

As already explained in Chapter 3.3 the main advantage of neural networks is the possibility
to use ’raw data’ like images or time series as an input without the need to manually extract
features. On method to get some insight into a trained model rather than accepting them
as ’black boxes’ is to display the visual patterns that the filters (units) are meant to respond
to. For each unit in a convolutional or the output layer of the network starting with a random
greyscale image the pixel values are adjusted such that the activation of the unit is maximized.
With this method it has been possible to obtain the image to which the filter is maximally
responsive. In Figure 4.7 the visualization of three different filters for each convolutional
layer is illustrated. Figure 4.8 shows the visualization of the four units in the output layer.

54

CHAPTER 4. DEEP LEARNING FOR OCT-IMAGES

Figure 4.8: Visualization of the four units in the output layer. Here each of the images rep-
resents how an input image should look like such that it obtains a maximal activation for a
certain class in the output layer.

4.2.3 Feature-Based Methods – Random Forests and Support Vector
Machines

As already discussed in Section 3.3 the main difference between neural networks and standard
machine learning methods like random forest and support vector machine is the input needed
for training. For the networks the OCT-images have been used as input, but for random forests
and support vector machines just a ’small’ vector of features is needed and therefore it has
been required to think about appropriate features representing and characterizing the images.
As the difference between the four classes lies just beneath the object surface and the part
above does not say anything the first step has been to normalize the OCT-images such that
the flattened surface is on the upper border of the image. Additionally the images have been
randomly flipped horizontally. As it can be seen in Figure 4.2 the information distinguishing
the classes best are just beneath that border. To become more robust against defects and other
flaws in the structure the image has been split into several patches. One row of 50× 50 pixel
patches have been taken from the image starting from the object border but as there is not
much information beneath the surface of the lower steps of a slope such patches have been
excluded.

55

CHAPTER 4. DEEP LEARNING FOR OCT-IMAGES

The Features

The selection of appropriate features is essential for the success of standard machine learn-
ing methods. For the current task of distinguishing between the four material classes it has
been important to look at the inner structure of the objects. Differences in brightness and
texture seem to be essential; based on recommendations of the company partner RECENDT
who have dealt with similar problems earlier, the chosen features have been: mean, median,
variance, skewness, kurtosis and histogram entropy. In the following we will show how these
values are computed and what they reveal regarding image analysis [28, 38, 43].

Mean: The mean is the first central moment. The mean over the N data points x1, .., xN is
calculated by adding up all the values and dividing that sum by N .

x̄ =
1

N

∑
xi

The mean therefore indicates the mid-point of a set of values but it is easily distorted by
outliers. In image analysis the mean provides general information about the brightness
of the image patch but small areas with either extremely bright or dark pixel values will
have a big influence on the mean.

Median: The median is similar to the mean but it is more robust against outliers. It is the value
separating the lower half from the higher half for a given data sample. For N sorted
values x1, .., xN the median is defined as

mean =


xN/2+x(N+1)/2

2
, N even,

x(N+1)/2, N odd.

Therefore the median also gives information about the general brightness of an image
patch but it is not as easily distorted by a small number of extremely bright or dark
pixels.

Variance: The variance is the second central moment. It measures how far the data points are
spread out from their mean and is calculated for N data points x1, .., xN by

var =
1

N

∑
(xi − x̄)2

For image processing the variance expresses how much dispersion exists from the
mean. A low value indicates that the pixel values are very similar to the mean whereas
a large variance indicated that the pixel values are spread out over a large range.

56

CHAPTER 4. DEEP LEARNING FOR OCT-IMAGES

Skewness: The skewness is the third moment and it is usually normalized. Regarding the his-
togram of data values the skewness measures the lopsidedness of the distribution. It is
often computed as the Fisher-Pearson coefficient of skewness

skewness =
m3

(m2)3/2

where mi is the ith central moment

mi =
1

N

∑
(xi − x̄)i

Skewness gives information about the data symmetry. A negative skewness means that
the left tail of the data histogram is longer or bigger than the right one and therefore in
image analysis it means that the frequency is wider spread over the dark pixel values.

Kurtosis: Kurtosis is the fourth moment and it is also usually normalized. It measures the peaked-
ness of a histogram of data values and is calculated by

kurtosis =
m4

m2
2

with mi is defined as above. For this thesis the Fisher kurtosis was used i.e. the value
3.0 is subtracted from the result to give 0.0 for a normal distribution. Since the kurtosis
measures the shape of the probability distribution for images it indicates the number of
pixels in the dominant gray level in comparison the the number of pixels in other gray
levels. The higher the kurtosis the more uniform the pixel values are with less noise.

Entropy: Entropy is a measure for the information content i.e. for the uncertainty in the values.
Taking the relative frequency of a value xi as p(xi) the entropy can be computed by

entropy = −
∑

p(xi) ∗ log(p(xi)).

The values of p(xi) can be computed easily from the histogram by dividing the number
of elements in the bin xi by the total number of elements. Since images contain many
pixels with unique values for this thesis the histogram was constructed with just ten
bins. In image analysis entropy measures the complexity of pixel values contained in
a certain neighborhood and therefore it can detect variations in the distribution of the
values.

Taking the first moments for the texture analysis of the image is proposed also in [49] where
it helps to classify medical CT-images. Additionally to the mean, the median has been used
to be more robust against outliers. The entropy of the histogram can be used to classify

57

CHAPTER 4. DEEP LEARNING FOR OCT-IMAGES

textures since a certain texture has repeating patterns which might lead to a certain entropy.
Therefore, the input for the learning-process has been a 6-dimensional feature vector which
was extracted for all image patches drawn from the input images like described before. The
feature vectors of the images in the test set have again not been used for training. Remark: In
the following ’accuracy’ means the rate of correctly classified images, not correctly classified
patches. The training has been performed with the features of the single patches but for the
evaluation the results of the patches of an image have been accumulated to get a prediction
for the whole image.

Random Forest

Using the random forest classifier method from the scikit-learn library [59] the parameters
to be tuned have been taken from [56]: The number of estimators (i.e. the number of trees
in the forest), the maximal depth of a tree, the maximal number of features considered for
a split, the minimal number of samples in a split and the minimal number of samples in a
leaf. After having adjusted the parameter ranges a few times during training the parameter
setting which has reached the best accuracy of 95,84% on the validation data has been the
following: The number of estimators has been 32 and the maximal depth has been 36. The
maximal number of features considered for a split has just been 1, the minimal number of
samples in a split has been 4 and the minimal number of samples in a leaf has been 2. With
that parameter setting the random forest has been trained again on the training and validation
data and on the independent test set it has reached an accuracy of 95,29%. The training
for one certain parameter setting has usually taken less than a minute for the random forest
classifier. The visualization of a random forest classifier is more complicated as it consists of
many single decision trees. We have tried to graphically represent one of the decision trees
and got an extremely wide tree. In Figure 4.9 a little part (about 1

16
) of the tree width can

be seen. Remark: Due to the zooming the connection lines between the colored nodes have
vanished. In Figure 4.10 just the first three depth-levels of the tree are visualized in detail.

Figure 4.9: Visualization of one of the decision trees contained in the final random forest
model. Inside the nodes there are given the ranges for the different feature values which
lead to that node. The colors represent the output classes.

58

CHAPTER 4. DEEP LEARNING FOR OCT-IMAGES

Figure 4.10: Detailed visualization of the first three depth-levels.

Support Vector Machine

Using the C-support vector classifier for the rbf kernel and the Linar-SVC for the linear
kernel from the scikit-learn library [60], [58] the parameters for this method have been tuned
following [57]: the penalty parameter C of the error term, the kernel to be used, for rbf kernel
the kernel coefficient γ and for the linear kernel the penalty norm and whether to use dual
optimization. Like for deep learning and random forests the parameter ranges have been
adjusted a few times and the the best validation accuracy has been reached with C = 500

and taking the rbf-kernel with γ = 0.01. With this parameter setting the classifier has been
retrained using the training and validation data. It has reached an accuracy of 95,19% on
the independent test set. The training for one certain parameter setting has taken about one
minute in average for a linear kernel but for the rbf kernel it has taken about 150 minutes in
average. A decent visualization of the SVM model has not been possible for this task as the
features have been six-dimensional and therefore it would have been necessary to visualize
the six-dimensional space.

4.2.4 Comparison

In Table 4.2 an overview of the results is provided and allows to compare the different ma-
chine learning methods. All of them were performing very well for the given task, but the
results show that deep learning has reached the best accuracy on the test set whereas the
average time for training one parameter setting on the GPU has been within a good scope.

59

CHAPTER 4. DEEP LEARNING FOR OCT-IMAGES

Deep Learning Random Forest Support Vector Machine
Accuracy on the

independent test set
99,47% 95,29% 95,19%

Average training time
for one parameter setting

5-10 minutes <1 minute
∼ 1 min (linear)
∼ 150 minutes (rbf)

Table 4.2: Accuracies and average training times for the three different machine learning
methods applied to the first task.

4.2.5 Remarks

(Nested) Cross-Validation

To test the need of (nested) cross-validation for the given task it has been important to explore
the variance of the results for the given dataset. Therefore, we have used the MNIST-model
architecture [51] but slightly modified it as the given data is more complex (add one layer).
As nested 5-fold cross-validation would result in test sets containing approximately 16% of
the data it has been split five times randomly into 42% training and validation data and 16%
test data. For each split we have trained a neural network and evaluated it on the test set.
The variance over these test accuracies can give an estimate for the general variance of the
data splitting. To be even more sure about the need of cross-validation we have done this for
a model with dropout, without dropout and with stochastic gradient descent optimizer. The
results can be seen in Figure 4.11. As the variances for the evaluation of different test-sets
have been very small in all the cases it can be assumed that the cross-validation would also
not have led to a high variance. Therefore, due to the very small variances for each of the
three models and the intense rise in computation costs cross-validation has neither been used
nested nor single for this task.

Colour Pigments in Injection Moulded Parts

To compare the color pigments and internal structure of the 3D-printed objects with the color
pigments and internal structure of everyday life goods additionally OCT-images of injection
moulded parts (mostly bottle caps) in the same four colors have been recorded. Then the
finally obtained deep learning classifier has been used to predict the class of the new injection
moulded part’s OCT-images. Per class there have been recorded 20 images and the classifier
has predicted the right class for nearly all of them, just one of the images of the part with
red color pigments has been classified wrongly. Therefore, the classifier is not just useful to
distinguish between color pigments of 3D printed objects but also for other plastic parts.

60

CHAPTER 4. DEEP LEARNING FOR OCT-IMAGES

Figure 4.11: The test accuracies of the tests for analyzing the need of cross-validation. Left:
The slightly modified MNIST model using dropout, variance = 8.717e−6. Middle: The
model without using dropout, variance = 8.163e−6. Right: the model using stochastic gra-
dient descent as optimizer, variance = 5.003e−5.

4.3 The Second Task – Inspection of Coatings

4.3.1 Problem Description

The second task has been the identification of coatings on different types of paper. Five differ-
ent materials with coated and uncoated areas have been examined: three different envelopes
and two different cigarette papers. The coated samples were given by the glued surfaces on
the objects and there have been two with self-adhesive areas and three with glue which needs
to be moistened. The goal has been to train a model which is able to distinguish between
OCT-images of coated and uncoated areas on the objects. The coating can be seen as a small
line above the object surface in the OCT-image (compare also Figure 4.12).
In total there have been recorded 9000 images (dimension 400 × 1000) evenly distributed
between the two classes. Again the imaging was done in a manner to prevent from learning
the false features (see also Section 4.2.1). To keep the data as clean as possible again the
position of the object-surface in the OCT image has been alternated in height for both coated
and uncoated areas and the different classes for one object type have always been handled on
the same day. Additionally all objects have been flipped 90 degree once to be independent
of possible coating-directions or differences in the underlying material. To examine the need
for cross-validation again a test for the variance of the data-splitting was performed in the
same way as it had been done for the first task: The whole data set has been split five times
differently into 42% training and validation and 16% test data. Using each for three different
model architectures has yielded a too high variance within the data splits which confirmed

61

CHAPTER 4. DEEP LEARNING FOR OCT-IMAGES

Figure 4.12: Some sample OCT-images of the second task. Given were five different ma-
terials where a recording of an uncoated area is at the top and a recording of a coated area
is at the bottom. The first three columns are the envelopes and the last two columns are the
cigarette papers. The coating can be seen as a small white line above the object surface and
its visibility depends on the different objects as on some the coating may be thicker than on
others or it may diffuse more into the material.

cross-validation as necessary, see Section 4.3.5 for exact results. To perform five-fold cross-
validation the data has been split into five folds containing each 1800 samples. As already
explained in Section 3.1 each of the folds has then been used as the independent test set once
while the remaining four folds have been split equally into training and validation set. This
has resulted in five different data-splits with each 3600 training and validation samples and
1800 test samples. The parameter selection was now performed for each data-splitting indi-
vidually and in the end the five results have been used to get an estimate for the generalization
abilities of the three different machine learning methods used: deep learning, random forest
and support vector machine.

4.3.2 Deep Learning

Again the Keras library [54] has been used. Having once more OCT-images as an input
the idea has been to start with the convolutional neural network architecture which has per-
formed best for the first task and start to tune the hyper-parameters from that base. To use
it for the new task it was necessary to change the number of classes to two and the image
dimensions to 50 × 125 to fit the proportions of the new data. Again the horizontal flip and
early stopping has been used against overfitting. For each of the five different data split-

62

CHAPTER 4. DEEP LEARNING FOR OCT-IMAGES

Split 1 Split 2 Split 3 Split 4 Split 5 Average
Validation Accuracy 98,81% 98,81% 99% 98,61% 99% 98,84%

Test Accuracy 98,28% 98,61% 98,22% 98,77% 98,99% 98,58%

Table 4.3: The validation and test accuracies for the five different data-splits obtained with
deep learning.

tings the hyper-parameters have then been tuned independently by training the network on
the current training data and evaluating it on the validation data. The test set has been put
aside right away for each splitting. The hyper-parameters to be tuned have basically been the
same as for the first task but as the base network contains already three convolutional layers
now the different settings have included removing or adding one convolutional layer. Again
using accuracy as performance measure and selecting the best set of hyper-parameters like
described earlier for each of the data-splits the best model has been obtained. For this task
the training time for one parameter setting has in average been about 5 minutes and therefore
a bit less than it had been for the first task due to a minimal decrease in the number of data
samples. In nearly all splits the number of convolutional layers has remained the same as
for the color-task, namely three, just in one data split the best performance score has been
reached with four convolutional layers. Now not only the Adadelta optimizer but in two cases
also the Adam optimizer has been the best choice to use. Batch normalization has improved
the accuracy for three out of the five data-splits. With the appropriate parameter settings the
maximal validation accuracies reached for each data-splitting with its corresponding test set
accuracies are provided in Table 4.3.
Therefore, the average validation accuracy has been 98,8% and the average test accuracy has
been 98,6% which corresponds to about 26 false predicted images out of the 1800 in the
test set. Further analyzing the wrongly predicted images for all the folds two-thirds of the
mistakes have happened as images of coated areas are classified as uncoated. More than a
half of the problematic images have been from the thick cigarette paper whereas the thin
cigarette paper seems to be well distinguishable. See Figure 4.13 for two examples of false
predicted images.

Filter Visualization

As five fold cross-validation has been used for the current task there are five different re-
sulting models, one for each data-splitting. Therefore, the filter images of all these models
can be obtained individually. In Figure 4.14 we present again three selected filters for each
convolutional layer and in Figure 4.15 the two filters of the output layer for the models which

63

CHAPTER 4. DEEP LEARNING FOR OCT-IMAGES

(a) (b)

Figure 4.13: Two examples of OCT-images which are wrongly predicted by the classifier.
Both images show the thicker cigarette paper, (a) shows an actually coated area on the paper
which has been misclassified as uncoated. (b) on the other hand shows an actually uncoated
area which has been misclassified as coated. Here it can be seen that the images of the two
classes are sometimes very similar and hard to distinguish.

has been trained on one certain data-split. The filter images of the models which have been
trained on the other data-splits may look similar.

4.3.3 Feature-Based Methods – Random Forests and Support Vector
Machines

The goal has been to compare the deep learning results from the coating task also to the stan-
dard machine learning methods random forest and support vector machine. Therefore, it has
been required to again extract appropriate features from the OCT-images. As the only dif-
ference between recordings of coated and uncoated areas lies just beneath the object surface
the code from the first task which had been used to flatten that border has been used and the
images have been flipped randomly horizontally. Now the image patches which were taken
from the normalized image have just been 15 × 50 pixels as for this issue the information
about the classes lies right on the surface of the objects.

The Features

In contrast to the 3D printed objects the difference between the classes now does not appear
in the inner structure of the objects but right on the border. Accordingly the idea has been
to extract that part of the OCT-image and to not consider the remaining part of the recording
which should not contain any information about the class. Studying the data in detail has
led to the assumption that 15 pixels should be sufficient to contain the information about the

64

CHAPTER 4. DEEP LEARNING FOR OCT-IMAGES

(a) First Convolutional Layer

(b) Second Convolutional Layer

(c) Third Convolutional Layer

Figure 4.14: Some filters of the convolutional layers i.e. the images certain units of convo-
lutional layers are maximally responsive to. It can be seen again that the later layers com-
bine the structures learned in earlier layers and therefore units of the third convolutional
layer have much complexer structures than the units of the first convolutional layer.

65

CHAPTER 4. DEEP LEARNING FOR OCT-IMAGES

Figure 4.15: Visualization of the two units in the output layer. Here the images represent
how an input image should look like such that it obtains a maximal activation for the coated
or uncoated class in the output layer. In comparison with the output filter images of the first
task - see Figure 4.8 - it can be seen that now there has been some activation on the ob-
ject surface and the structures which to model searches for to distinguish between images
of coated and uncoated areas are primarily horizontal. Therefore it can be argued that the
model seems to have learned the right features as the coating can be seen in OCT-images
also as a horizontal structure.

properties distinguishing the classes. On the one hand a part of the base material appearance
was included for both classes s.t. that the line between the coating and the material is fully
visible. But on the other hand not too much of the base material should have been in the
image as it does not contain knowledge about the class. For each of the 15 × 50 patches
obtained in that way the following features have been computed: mean, median, variance,
minimal brightness and maximal brightness. The calculations and meanings of the first three
features is specified in Section 3.3. Minimal and maximal brightness refers to the darkest
respectively brightest pixel value in the image patch. The intention has been that for the
coated areas the image patches contain the dark border between the coating and the base
material and should therefore contain darker values which can be seen in the mean, median
and minimal brightness. Analogously the uncoated areas may contain brighter values that
influence the mean, median and maximal brightness values and the variance can be helpful
to observe how far the values diverge. Following this the input to the machine learning
procedure now has been a five dimensional feature vector which was extracted for each image
patch attained like described before. Remark: Like already mentioned for the first task
’accuracy’ in the following means the rate of the correctly classified images, not the correctly
classified patches. Of course the classifier has been trained with and does classify the feature
vectors of the individual patches but to compute the accuracy value the results for all patches
of an image have been accumulated to get the results for the whole image.

66

CHAPTER 4. DEEP LEARNING FOR OCT-IMAGES

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average
Validation Accuracy 95,64% 96,22% 95,36%, 95,14% 96,17% 95,71%

Test Accuracy 96,05% 95,28% 94,61% 93,89% 95,72% 95,11%

Table 4.4: The validation and test accuracies for the five different data-splits obtained with
random forest classifiers.

Random Forest

Again the random forest classifier method from the scikit-learn library [59] has been used and
the parameters to be tuned were taken from [56]. Thus the values of the number of estimators,
the maximal depth, the maximal numbers of features considered for a split, the minimal
number of samples for a split and the minimal number of samples in a leaf have been varied
and the value ranges have been adjusted a few times to maximize the performance score on the
appropriate validation data. According to Section 4.3.5 cross-validation has been needed and
therefore the parameter tuning has been done individually for each of the five data-splits. The
parameter settings which reach the best accuracies on the correct validation sets have ranged
from one to 128 trees in the forest with a maximal depth from 17 to 43 nodes. The maximal
number of features considered for a split have either been two or four, the minimal number
of samples required for a split has been between five and nine and the minimal number of
samples required in a leaf has either been one or two. For each data split with the fitting
parameter settings the models trained on the training data have achieved in average 95,7%
validation accuracy. After finding the best parameter setting for each split the model has
been retrained on the training and validation data with the corresponding parameters and
evaluated on the independent test set where they have reached 95,1% average test accuracy.
The detailed results are shown in Table 4.4.
Again the training for one certain parameter setting has usually taken less than a minute for
the random forest classifier. Since cross-validation has been used we have obtained five final
random forest classifiers for this task. To visualize one decision tree we have choosen the
random forest classifier with the minimal tree-depth, namely 17. Therefore the graphical
representation of one decision tree in that random forest is again extremely wide but not that
deep any more as it had been for the first task. In Figure 4.16 a little part (about 1

16
) of the tree

width can be seen. In Figure 4.17 just the first three depth-levels of the tree are visualized in
detail.

67

CHAPTER 4. DEEP LEARNING FOR OCT-IMAGES

Figure 4.16: Visualization of one of the decision trees contained in one of the final random
forest classifiers trained for the coating task. Inside the nodes there are given the ranges for
the different feature values which lead to that node. The colors represent the output classes.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average
Validation Accuracy 94,47% 95,17% 94,83% 94,39% 94,36% 94,64%

Test Accuracy 94,55% 94,44% 93,33% 93,16% 94,72% 94,04%

Table 4.5: The validation and test accuracies for the five different data-splits obtained with
support vector machine classifiers.

Support Vector Machine

Again the C-support vector classifier and the Linear-SVC from the Scikit-learn library [60],
[58] have been used and the following parameters were tuned: the penalty parameter of the
error C, the kernel coefficient γ for the rbf-kernel and the penalty norm and whether to use
dual optimization for the Linear-SVC. Cross-validation has been used repeatedly in a five-
fold way and thus the parameter settings were obtained separately for each data split. In all
five cases the best results on the corresponding validation set have been reached with the
linear kernel and the l2 penalty norm. The error parameter C has varied from 0,5 to 1000 and
in just one case the solving of the primal instead of the dual optimization problem has given
better results. The obtained validation and test accuracies for the five data-splits are shown in
detail in Table 4.5. Accordingly the average validation accuracy for this task has been 94,6%
and the test accuracy has been 94% for the support vector machine .
The training for one certain parameter setting has taken less than a minute for a linear kernel.
For the rbf kernel it has taken about 6 minutes in average which is much faster than it had
been for the first task. This has been due to the reduction of the feature vector dimension
and the decrease in the number of training samples. The visualization of the SVM model
was again not possible for this task as the features have been five-dimensional and therefore
it would have been necessary to visualize the five-dimensional space.

68

CHAPTER 4. DEEP LEARNING FOR OCT-IMAGES

Figure 4.17: Detailed visualization of the first three depth-levels.

4.3.4 Comparison

In Table 4.6 an overview of the results is provided and allows to compare the different ma-
chine learning methods. All of them have performed well for the given task, but the results
show that deep learning has again reached the best accuracy on the test set whereas the aver-
age time for training one parameter setting on the GPU has been within a good scope.

4.3.5 Remarks

(Nested) Cross-Validation

Again the need of (nested) cross-validation has been tested by examining the variance of the
results for different test-set selections in the same way as before. Thus the whole dataset
has been split into 42% training and validation samples and 16% test samples five times ran-
domly. Using each data-split for the three different model architectures the variance of the
test accuracies have been computed to get aware of how far the results of the different selec-
tion of training/validation/test samples diverge. The results can be seen in Figure 4.18. Note
that in contrast to the boxplots of the first task shown in Figure 4.11 the range of accuracy

69

CHAPTER 4. DEEP LEARNING FOR OCT-IMAGES

Deep Learning Random Forest Support Vector Machine
Average accuracy on the

independent test set
98,58% 95,11% 94,04%

Average training time
for one parameter setting

∼ 5 minutes <1 minute
<1 min (linear)
∼ 6 minutes (rbf)

Table 4.6: Average accuracies and training times for the three different machine learning
methods applied to the second task.

values now has been much bigger since it has spread from about 60% to about 99% whereas
in the first task the range had just been from about 97% to about 99%. Since the variance now
has been quite big for the plain model and the model with SGD-optimizer in comparison to
the first task now using cross-validation has been required. As already stated in Section 3.1
and 3.2.4 cross-validation usually is computationally costly especially when it is performed
in a nested way. Therefore we have decided to practice just the outer cross-validation for this
task as it has been more important for us to get a better estimate for the generalization error
that the selection of the hyper-parameters would have been.

Figure 4.18: The test accuracies for the analyzation of the need of cross-validation. Left:
The slightly modified MNIST model using dropout, variance = 0.012. Middle: The model
without using dropout, variance = 9.645e−7. Right: the model using stochastic gradient de-
scent as optimizer, variance = 0.006.

70

CHAPTER 4. DEEP LEARNING FOR OCT-IMAGES

Deep Learning Random Forest Support Vector Machine
Task 1:

Material classification
99,47% 95,29% 95,19%

Task 2:
Coating inspection

98,58% 95,11% 94,04%

Table 4.7: Accuracies for the three different machine learning methods on the independent
test set respectively the average over those of the different data-splits needed for cross-
validation for the second task.

4.4 Comparison and Conclusions

In Table 4.7 an overview of all the results is provided and allows to compare the different
methods for both tasks. All machine learning methods have performed very well for the given
tasks, but the results show that deep learning in both cases has reached the best accuracy on
the test set.
As the range of possible parameters for the different machine learning methods is unlimited
the tuning of this parameters could have always been continued further. Therefore, to make
the three methods comparable, we have chosen to restrict the computational time used for the
parameter tuning, as this may also be a restriction if the methods were used in an industrial
context. The time which was needed for the training of a certain parameter setting differ
strongly between the methods: A random forest classifier and the support vector machine
with the linear kernel has usually taken less than a minute whereas a support vector machine
classifier with a rbf-kernel has taken about 200 min in average. Neural networks can also run
on the GPU which speeds up training and has taken just about 5-10 minutes in average. Better
results for the standard methods therefore could have been reached by longer parameter-
tuning runs on the one hand (especially for SVM) and on the other hand the extracted features
may not have been good enough and should have been extended / replaced. Therefore, if
computational time has not been a restriction and the extracted features have been optimized,
then SVM and RF may have also reached as good results as DL. But spending much more
time on the manual feature selection confirms even more the advantages of neural networks
with their built-in feature selection capabilities.

71

CHAPTER 4. DEEP LEARNING FOR OCT-IMAGES

4.5 Possible Extensions and Outlook

In this work we have described three different machine learning methods: deep learning,
random forest and support vector machine. Furthermore these methods have been applied to
two different classification tasks in the context of industrial materials with the use of OCT-
images. For the future there are several ways to extend and maybe improve the work:

Other OCT-system

For the results presented in this thesis there had been used an industrial OCT-system which
reaches an axial resolution of 7, 5µm. But there is also the opportunity to do the recordings
on an in-house OCT-system which reaches an axial resolution of 2µm. As the penetration
depth is smaller for the in-house system it is only recommended to use it for the second task
as in contrast to the first task here the information about the class lies on the object surface.
Because of the higher resolution it can be assumed that the dark border between the coating
and the base material appears stronger in OCT-recording of the in-house system than it does
on the recordings of the industrial system. Accordingly having better images may lead to
better results.

Use Google’s MorphNet

For the optimization of deep learning models Google has developed a technique called Mor-
phNet. It is an approach which iteratively shrinks and expands existing neural networks with
several interesting goals: On the one hand it can optimize a network structure with respect
to FLOPs or model size while keeping the performance high or on the other hand obtaining
higher performance while keeping or even reducing the resource usage. Additionally it is
scalable to large datasets and large models and is simple and fast to apply. This year Google
released an open source version of MorphNet on github [62]. Applying MorphNet to the
models obtained for this work may lead to better results. Further information can be found in
[17].

Scattering Vectors

In [6] and [39] the application of scattering transform to image handwritten digit recogni-
tion and texture classification is demonstrated. By iterating over wavelet decompositions
and complex modulus a scattering vector can be computed which holds local multi-scale and
multi-direction co-occurrence information. It is also translation invariant and linearizes small
deformations and therefore gives knowledge about the texture of an image without being

72

CHAPTER 4. DEEP LEARNING FOR OCT-IMAGES

confused by small errors. The scattering vectors can be applied as features to standard ma-
chine learning methods and in that way yield state of the art results. One future approach for
the given tasks, especially for the first task, can be to obtain the features for support vector
machine and random forests with scattering transform.

73

5 Implementation

In the following we will present the most important parts of the code used for the practical
part of this thesis. The code has been written in the Python programming language and is
tested with WinPython 3.7.0.2. For the deep learning part the Keras library with Tensorflow
as backend has been used. For the random forests and support vector machines the corre-
sponding implementation from Scikit-learn have been used. Note that the following code
snippets are just samples of the originally used code as it needs to be modified to correspond
to the different tasks.

The first step is to split the data into training, validation and test set. This is done in two
different ways depending on whether cross validation is needed.
”””
S p l i t s and c o p i e s images o f d i f f e r e n t c l a s s e s t o t r a i n i n g , v a l i d a t i o n and t e s t d a t a s e t s .
R e t u r n s p a t h s o f t h e d a t a s e t s .

T e s t e d w i t h WinPython64 − 3 . 7 . 0 . 2 .

Au thor : Laura Peham <l a u r a . peham@recendt . a t>
”””
import os
import s h u t i l
import random

def s p l i t C o p y (da ta name , g r e e n d i r s , g r e y d i r s , r e d d i r s , t r a n s d i r s , s eed) :
’ ’ ’
C r e a t s a f o l d e r ’ data name ’ i n ’ t r a i n i n g−da ta ’ and randomly s p l i t s t h e g i v e n d a t a s e t s
i n t o 50% t r a i n i n g data , 25% v a l i d a t i o n and 25% t e s t da ta .
Then c o p i e s t h e s e as s u b f o l d e r s i n t o ’ t r a i n i n g n a m e ’ s . t . t h e s t r u c t u r e can be used
by t h e ImageDataGenera tor .
’ ’ ’
t r a i n p r o p = 0 . 5
v a l p r o p = 0 . 2 5
Tes t−prop i s 1 − (t r a i n p r o p + v a l p r o p)
random . seed (seed)

b a s e d i r = os . p a t h . j o i n (’ t r a i n i n g−d a t a ’ , da t a name)
i f not os . p a t h . e x i s t s (b a s e d i r) :

74

CHAPTER 5. IMPLEMENTATION

os . mkdir (b a s e d i r)

t r a i n d i r = os . p a t h . j o i n (b a s e d i r , ’ t r a i n ’)
v a l d i r = os . p a t h . j o i n (b a s e d i r , ’ v a l i d a t i o n ’)
t e s t d i r = os . p a t h . j o i n (b a s e d i r , ’ t e s t ’)
I f t h e ’ data name ’ a l r e a d y e x i s t s i t j u s t r e t u r n s t h e p a t h s
i f os . p a t h . e x i s t s (t r a i n d i r) :

re turn ([t r a i n d i r , v a l d i r , t e s t d i r])

os . mkdir (t r a i n d i r)
os . mkdir (v a l d i r)
os . mkdir (t e s t d i r)

c l a s s e s = { ’ g r e e n ’ : g r e e n d i r s , ’ g r ey ’ : g r e y d i r s , ’ r e d ’ : r e d d i r s , ’ t r a n s ’ : t r a n s d i r s }

f o r c l a s s in c l a s s e s :
t r a i n c l a s s d i r = os . p a t h . j o i n (t r a i n d i r , c l a s s)
os . mkdir (t r a i n c l a s s d i r)
v a l c l a s s d i r = os . p a t h . j o i n (v a l d i r , c l a s s)
os . mkdir (v a l c l a s s d i r)
t e s t c l a s s d i r = os . p a t h . j o i n (t e s t d i r , c l a s s)
os . mkdir (t e s t c l a s s d i r)

f o r d in c l a s s e s [c l a s s] :
d = os . p a t h . j o i n (’ d a t a ’ , d)
d = os . p a t h . j o i n (d , ’ I m a g e d a t a ’)
S i n c e t h e OCT−images have ’ i n t e n s i t y ’ i n t h e i r name t h a t ’ s how t h e y can be

s e p e r a t e d from p o s s i b l e o t h e r images .
f i l e s = [f f o r f in os . l i s t d i r (d) i f ’ i n t e n s i t y ’ in f]
random . s h u f f l e (f i l e s)
n = l e n (f i l e s)
f o r i in range (0 , i n t (n∗ t r a i n p r o p)) :

s h u t i l . c o p y f i l e (os . p a t h . j o i n (d , f i l e s [i]) , os . p a t h . j o i n (t r a i n c l a s s d i r ,
f i l e s [i]))

f o r i in range (i n t (n∗ t r a i n p r o p) , i n t (n ∗ (t r a i n p r o p + v a l p r o p))) :
s h u t i l . c o p y f i l e (os . p a t h . j o i n (d , f i l e s [i]) , os . p a t h . j o i n (v a l c l a s s d i r , f i l e s

[i]))
f o r i in range (i n t (n ∗ (t r a i n p r o p + v a l p r o p)) , n) :

s h u t i l . c o p y f i l e (os . p a t h . j o i n (d , f i l e s [i]) , os . p a t h . j o i n (t e s t c l a s s d i r ,
f i l e s [i]))

re turn ([t r a i n d i r , v a l d i r , t e s t d i r])

S p l i t s t h e da ta i n kFo ld s s e t s t o use f o r c r o s s v a l i d a t i o n
def s p l i t C V (data name , kFolds , g r e e n d i r s , g r e y d i r s , r e d d i r s , t r a n s d i r s , s eed) :

t r a i n d i r s = []
v a l d i r s = []
t e s t d i r s = []
random . seed (seed)

b a s e d i r = os . p a t h . j o i n (’ t r a i n i n g−d a t a ’ , da t a name)
i f not os . p a t h . e x i s t s (b a s e d i r) :

os . mkdir (b a s e d i r)

75

CHAPTER 5. IMPLEMENTATION

c l a s s e s = { ’ g r e e n ’ : g r e e n d i r s , ’ g r ey ’ : g r e y d i r s , ’ r e d ’ : r e d d i r s , ’ t r a n s ’ : t r a n s d i r s }

f i l e s = {}
f o r c l a s s in c l a s s e s :

c l a s s F i l e s = []
f o r d in c l a s s e s [c l a s s] :

d = os . p a t h . j o i n (’ d a t a ’ , d)
d = os . p a t h . j o i n (d , ’ I m a g e d a t a ’)
S i n c e t h e OCT−images have ’ i n t e n s i t y ’ i n t h e i r name t h a t ’ s how t h e y can be

s e p e r a t e d from p o s s i b l e o t h e r images .
c l a s s F i l e s . e x t e n d (os . p a t h . j o i n (d , f) f o r f in os . l i s t d i r (d) i f ’ i n t e n s i t y ’ in f)

random . s h u f f l e (c l a s s F i l e s)
f i l e s [c l a s s] = c l a s s F i l e s

f o r i in range (1 , kFo ld s +1) :
f o l d d i r = os . p a t h . j o i n (b a s e d i r , ’ Fo ld{} ’ . format (i))
i f not os . p a t h . e x i s t s (f o l d d i r) :

os . mkdir (f o l d d i r)

t r a i n d i r = os . p a t h . j o i n (f o l d d i r , ’ t r a i n ’)
v a l d i r = os . p a t h . j o i n (f o l d d i r , ’ v a l i d a t i o n ’)
t e s t d i r = os . p a t h . j o i n (f o l d d i r , ’ t e s t ’)
I f t h e ’ data name ’ a l r e a d y e x i s t s i t j u s t r e t u r n s t h e p a t h s
i f os . p a t h . e x i s t s (t r a i n d i r) :

t r a i n d i r s . append (t r a i n d i r)
v a l d i r s . append (v a l d i r)
t e s t d i r s . append (t e s t d i r)

e l s e :
os . mkdir (t r a i n d i r)
os . mkdir (v a l d i r)
os . mkdir (t e s t d i r)

f o r c l a s s in c l a s s e s :
t r a i n c l a s s d i r = os . p a t h . j o i n (t r a i n d i r , c l a s s)
os . mkdir (t r a i n c l a s s d i r)
v a l c l a s s d i r = os . p a t h . j o i n (v a l d i r , c l a s s)
os . mkdir (v a l c l a s s d i r)
t e s t c l a s s d i r = os . p a t h . j o i n (t e s t d i r , c l a s s)
os . mkdir (t e s t c l a s s d i r)

c l a s s F i l e s = f i l e s [c l a s s]
n = l e n (c l a s s F i l e s) / / kFo ld s
f o r j in range ((i −1)∗n , i ∗n) :

s h u t i l . c o p y f i l e (c l a s s F i l e s [j] , os . p a t h . j o i n (t e s t c l a s s d i r , os . p a t h .
basename (c l a s s F i l e s [j])))

c l a s s F i l e s = c l a s s F i l e s [: (i −1)∗n] + c l a s s F i l e s [i ∗n :]

random . s h u f f l e (c l a s s F i l e s)
n = l e n (c l a s s F i l e s)
f o r j in range (n / / 2) :

s h u t i l . c o p y f i l e (c l a s s F i l e s [j] , os . p a t h . j o i n (t r a i n c l a s s d i r , os . p a t h .
basename (c l a s s F i l e s [j])))

f o r j in range (n / / 2 , n) :
s h u t i l . c o p y f i l e (c l a s s F i l e s [j] , os . p a t h . j o i n (v a l c l a s s d i r , os . p a t h .

basename (c l a s s F i l e s [j])))

76

CHAPTER 5. IMPLEMENTATION

t r a i n d i r s . append (t r a i n d i r)
v a l d i r s . append (v a l d i r)
t e s t d i r s . append (t e s t d i r)

re turn ([t r a i n d i r s , v a l d i r s , t e s t d i r s])

The next script shows how to randomly select the hyperparameters of a model, train the model
on a given training set and evaluate it on the validation set. This script can be used to find the
best hyperparameters for a certain task and the ranges for the parameters should be adjusted
a few times according to the results.
”””
S c r i p t t o s e l e c t t h e b e s t h y p e r p a r a m e t e r s o f a model .

T e s t e d w i t h WinPython64 −3 . 7 . 0 . 2

Au thor : Laura Peham <l a u r a . peham@recendt . a t>
Based on a S c r i p t w r i t t e n by Ro be r t P o l l a k
”””

import os
import t ime
import d a t e t i m e
import numpy as np
from random import seed , r a n d r a n g e
import m a t p l o t l i b
m a t p l o t l i b . use (’Agg ’)
import m a t p l o t l i b . p y p l o t a s p l t
from k e r a s . l a y e r s import Dense , Dropout , F l a t t e n , B a t c h N o r m a l i z a t i o n , A c t i v a t i o n
from k e r a s . l a y e r s import Conv2D , MaxPooling2D
from k e r a s import backend as K
from k e r a s . models import S e q u e n t i a l
from k e r a s . c a l l b a c k s import CSVLogger , ModelCheckpoint , E a r l y S t o p p i n g
from k e r a s . o p t i m i z e r s import Adade l t a , SGD, Adam
from k e r a s . p r e p r o c e s s i n g . image import I m a g e D a t a G e n e r a t o r
from k e r a s . l o s s e s import c a t e g o r i c a l c r o s s e n t r o p y
import s t a t i s t i c s

import t e n s o r f l o w as t f
from k e r a s . backend . t e n s o r f l o w b a c k e n d import s e t s e s s i o n
c o n f i g = t f . C o n f i g P r o t o ()
c o n f i g . g p u o p t i o n s . a l l o w g r o w t h = True # d y n a m i c a l l y grow t h e memory used on t h e GPU
s e s s = t f . S e s s i o n (c o n f i g = c o n f i g)
s e t s e s s i o n (s e s s) # s e t t h i s TensorFlow s e s s i o n as t h e d e f a u l t s e s s i o n f o r Keras

program = os . p a t h . basename (f i l e)
v e r s i o n = ’ v1−0−0 ’

w r i t e f i t f i l e s = bool (1)

u s e o p t i m a l h y p e r p a r a m s = bool (0)

77

CHAPTER 5. IMPLEMENTATION

i f not u s e o p t i m a l h y p e r p a r a m s :
v e r s i o n += ’−randompars ’

o p t i l o g d i r = ’ o p t i−l o g s / ’
o p t i l o g i d = (’ o p t i ’ + ’ ’ + d a t e t i m e . d a t e t i m e . now () . s t r f t i m e (’%Y−%m−%d %H−%M’) + ’ ’ +

v e r s i o n + ’ ’)
o p t i l o g n a m e = o p t i l o g d i r + o p t i l o g i d + ’ . csv ’
os . mkdir (o p t i l o g d i r + o p t i l o g i d)

D a t a s e t
t r a i n d i r = ’ da t a name\ t r a i n ’
v a l d i r = r ’ da ta name\ v a l i d a t i o n ’
I n p u t image d i m e n s i o n s
img dims = (5 0 , 125)
n u m c l a s s e s = 4
u n i t s = [3 2 , 64 , 128 , 128]
u n i t d e n s e = 256
n conv = 3 # The number o f c o n v o l u t i o n a l l a y e r s
The b e s t acc r e s u l t u n i t l now :
o p t i m a l m a x v a l a c c = 0 . 9 5

n = 1
nmax = 0
v a l a c c l i s t = []

h e a d e r = ’ n\ tnmax\ t u n i t s 0 \ t u n i t s 1 \ t u n i t s 2 \ t u n i t s 3 \ t u n i t D e n s e \ t c o n v d r o p \ t d e n s e d r o p \ t o p t \
t b a t c h s i z e \tBN\ t v a l a c c \ tmed ian\ t m i n s \ t e p o c h s ’

whi le True :
i f n % 6 == 1 : # s . t . even w i t h CUDA l o g messages , t h e r e ’ s a lways one on s c r e e n .

p r i n t (program + ’ ’ + v e r s i o n + ’ , l o g s : ’ , o p t i l o g i d)
p r i n t (h e a d e r)

i f n == 1 :
wi th open (o p t i l o g n a m e , ’ a ’) a s l o g f i l e :

p r i n t (program + ’− ’ + v e r s i o n , f i l e = l o g f i l e)
p r i n t (header , f i l e = l o g f i l e , f l u s h =True)

l o g f i l e b a s e = o p t i l o g i d + ’ { : 03 d} ’ . format (n)
l o g b a s e = o p t i l o g d i r + o p t i l o g i d + ’ / ’ + l o g f i l e b a s e

i f u s e o p t i m a l h y p e r p a r a m s :
np . random . seed (1)
seed (1)
Hyperparame te r s :
n conv = 3
u n i t s = [3 2 , 64 , 128 , 0]
u n i t d e n s e = 256
c o n v d r o p o u t = 0 . 1
d e n s e d r o p o u t = 0 . 0 5
opt name = ’ A d a d e l t a ’ ; o p t i m i z e r = A d a d e l t a ()
b a t c h S i z e = 32
b a t c h N o r m a l i z a t i o n = F a l s e

e l s e :
np . random . seed (n)
seed (l o g f i l e b a s e)

78

CHAPTER 5. IMPLEMENTATION

Randomly choose hyper−p a r a m e t e r s :

Try d i f f e r e n t numbers o f conv−l a y e r s : 2 , 3 , and 4
n conv = r a n d r a n g e (2 , 5)

t r y d i f f e r e n t u n i t s i z e s f o r a l l l a y e r s (max 5 l a y e r s w i t h v a r i a b l e number o f u n i t s
)

u n i t s = [0 , 0 , 0 , 0]
f o r i in range (n conv) :

k = r a n d r a n g e (1 , 1 1)
u n i t s [i] = (k∗20) # use j u s t m u l t i p l e s o f 20 , from 20 t o 200

k = r a n d r a n g e (1 , 2 1)
u n i t d e n s e = k∗20 # From 20 t o 400

c o n v d r o p o u t = r a n d r a n g e (1 0) / 2 0
d e n s e d r o p o u t = r a n d r a n g e (2 0) / 2 0

o p t n = r a n d r a n g e (3)
i f o p t n == 0 :

opt name = ’Adam ’ ; o p t i m i z e r = Adam ()
e l i f o p t n == 1 :

opt name = ’SGD ’ ; o p t i m i z e r = SGD(n e s t e r o v = True)
e l s e :

op t name = ’ A d a d e l t a ’ ; o p t i m i z e r = A d a d e l t a ()

As t h e r e are b i g gaps be tween t h e b a t c h s i z e s , one can use 0 . 5 s t e p s i z e , b u t t h e n
you need t o round

power = r a n d r a n g e (4 , 8)
b a t c h S i z e = 2∗∗power

i f r a n d r a n g e (2) == 0 :
b a t c h N o r m a l i z a t i o n = True

e l s e :
b a t c h N o r m a l i z a t i o n = F a l s e

l i n e = ’ { : 3 d}\ t { : 3 d}\ t { : 2 d}\ t { : 2 d}\ t { : 2 d}\ t { : 2 d}\ t { : 2 d}\ t { : . 2 f }\ t { : . 2 f }\ t { : 8 s}\ t { : 2 d}\ t
{ : 3 d} ’ . format (n , nmax , u n i t s [0] , u n i t s [1] , u n i t s [2] , u n i t s [3] , u n i t d e n s e , c o n v d r o p o u t ,

d e n s e d r o p o u t , opt name , b a t c h S i z e , b a t c h N o r m a l i z a t i o n)

l i n e = ’{ :3 d}\ t { :3 d}\ t { : . 2 f }\ t { : . 2 f }\ t { :8 s}\ t { :2 d}\ t { :3 d } ’ . f o r m a t (n , nmax , c o n v d r o p o u t
, d e n s e d r o p o u t , opt name , b a t c h S i z e , b a t c h N o r m a l i z a t i o n)
p r i n t (l i n e , end = ’ ’)
w i th open (o p t i l o g n a m e , ’ a ’) a s l o g f i l e :

p r i n t (l i n e , end= ’ ’ , f i l e = l o g f i l e , f l u s h =True)

t r a i n d a t a g e n = I m a g e D a t a G e n e r a t o r (r e s c a l e = 1 . / 2 5 5 , h o r i z o n t a l f l i p = True)
t e s t d a t a g e n = I m a g e D a t a G e n e r a t o r (r e s c a l e = 1 . / 2 5 5)

t r a i n g e n e r a t o r = t r a i n d a t a g e n . f l o w f r o m d i r e c t o r y (t r a i n d i r , t a r g e t s i z e = img dims ,
co lo r mode = ’ g r a y s c a l e ’ , b a t c h s i z e = b a t c h S i z e , c l a s s m o d e = ’ c a t e g o r i c a l ’)
v a l g e n e r a t o r = t e s t d a t a g e n . f l o w f r o m d i r e c t o r y (v a l d i r , t a r g e t s i z e = img dims ,
co lo r mode = ’ g r a y s c a l e ’ , b a t c h s i z e = b a t c h S i z e , c l a s s m o d e = ’ c a t e g o r i c a l ’)

79

CHAPTER 5. IMPLEMENTATION

i f K. i m a g e d a t a f o r m a t () == ’ c h a n n e l s f i r s t ’ :
i n p u t s h a p e = (1 , img dims [0] , img dims [1])

e l s e :
i n p u t s h a p e = (img dims [0] , img dims [1] , 1)

model = S e q u e n t i a l ()

i f b a t c h N o r m a l i z a t i o n :
model . add (Conv2D (u n i t s [0] , k e r n e l s i z e = (3 , 3) ,

u s e b i a s = F a l s e ,
i n p u t s h a p e = i n p u t s h a p e))

model . add (B a t c h N o r m a l i z a t i o n ())
model . add (A c t i v a t i o n (” r e l u ”))
model . add (Conv2D (u n i t s [1] , (3 , 3) , u s e b i a s = F a l s e))
model . add (B a t c h N o r m a l i z a t i o n ())
model . add (A c t i v a t i o n (” r e l u ”))
model . add (MaxPooling2D (p o o l s i z e = (2 , 2)))
model . add (Dropout (c o n v d r o p o u t))
i f not n conv == 2 :

model . add (Conv2D (u n i t s [2] , (3 , 3) , u s e b i a s = F a l s e))
model . add (B a t c h N o r m a l i z a t i o n ())
model . add (A c t i v a t i o n (” r e l u ”))
model . add (MaxPooling2D (p o o l s i z e = (2 , 2)))
model . add (Dropout (c o n v d r o p o u t))
i f n conv == 4 :

model . add (Conv2D (u n i t s [3] , (3 , 3) , u s e b i a s = F a l s e))
model . add (B a t c h N o r m a l i z a t i o n ())
model . add (A c t i v a t i o n (” r e l u ”))
model . add (MaxPooling2D (p o o l s i z e = (2 , 2)))
model . add (Dropout (c o n v d r o p o u t))

model . add (F l a t t e n ())
model . add (Dense (u n i t d e n s e , u s e b i a s = F a l s e))
model . add (B a t c h N o r m a l i z a t i o n ())
model . add (A c t i v a t i o n (” r e l u ”))
model . add (Dropout (d e n s e d r o p o u t))

e l s e :
model . add (Conv2D (u n i t s [0] , k e r n e l s i z e = (3 , 3) ,

a c t i v a t i o n = ’ r e l u ’ ,
i n p u t s h a p e = i n p u t s h a p e))

model . add (Conv2D (u n i t s [1] , (3 , 3) , a c t i v a t i o n = ’ r e l u ’))
model . add (MaxPooling2D (p o o l s i z e = (2 , 2)))
model . add (Dropout (c o n v d r o p o u t))
i f not n conv == 2 :

model . add (Conv2D (u n i t s [2] , (3 , 3) , a c t i v a t i o n = ’ r e l u ’))
model . add (MaxPooling2D (p o o l s i z e = (2 , 2)))
model . add (Dropout (c o n v d r o p o u t))
i f n conv == 4 :

model . add (Conv2D (u n i t s [3] , (3 , 3) , a c t i v a t i o n = ’ r e l u ’))
model . add (MaxPooling2D (p o o l s i z e = (2 , 2)))
model . add (Dropout (c o n v d r o p o u t))

model . add (F l a t t e n ())
model . add (Dense (u n i t d e n s e , a c t i v a t i o n = ’ r e l u ’))
model . add (Dropout (d e n s e d r o p o u t))

80

CHAPTER 5. IMPLEMENTATION

model . add (Dense (n u m c l a s s e s , a c t i v a t i o n = ’ so f tmax ’))

model . compi le (l o s s = c a t e g o r i c a l c r o s s e n t r o p y , o p t i m i z e r = o p t i m i z e r , m e t r i c s =[’ a c c u r a c y ’])

c a l l b a c k s =[
S top a t o v e r f i t t i n g .
E a r l y S t o p p i n g (m o n i t o r = ’ v a l a c c ’ , m i n d e l t a = 0 . 0 0 1 , p a t i e n c e =3 , v e r b o s e =1) ,
Save t h e b e s t model .
ModelCheckpoin t (l o g b a s e + ’ . hdf5 ’ , m o n i t o r = ’ v a l a c c ’ , v e r b o s e =1 , s a v e b e s t o n l y =

True)
]

i f w r i t e f i t f i l e s :
c s v l o g g e r = CSVLogger (l o g b a s e + ’−acc . csv ’ , s e p a r a t o r = ’\ t ’)
c a l l b a c k s . i n s e r t (0 , c s v l o g g e r)

s t a r t = t ime . t ime ()
h i s t o r y = model . f i t g e n e r a t o r (t r a i n g e n e r a t o r , s t e p s p e r e p o c h = l e n (t r a i n g e n e r a t o r) ,
epochs =100 , v e r b o s e = 0 ,

v a l i d a t i o n d a t a = v a l g e n e r a t o r , v a l i d a t i o n s t e p s = l e n (
v a l g e n e r a t o r) , s h u f f l e = F a l s e ,

c a l l b a c k s = c a l l b a c k s)

d u r a t i o n = round ((t ime . t ime () − s t a r t) / 6 0)

acc = h i s t o r y . h i s t o r y [’ acc ’]
t r y :

v a l a c c = h i s t o r y . h i s t o r y [’ v a l a c c ’]
m a x v a l a c c = max (v a l a c c)
epoch of max = np . argmax (v a l a c c) + 1

v a l a c c l i s t . append (m a x v a l a c c)
median = s t a t i s t i c s . median (v a l a c c l i s t)

i f m a x v a l a c c > o p t i m a l m a x v a l a c c :
nmax = n
o p t i m a l m a x v a l a c c = m a x v a l a c c

P l o t r e s u l t s .
f i g = p l t . f i g u r e (f i g s i z e = (1 0 , 1 0) , d p i =75)
epochs = np . a r a n g e (l e n (acc)) + 1
p l t . p l o t (epochs , acc , ’ bo ’ , l a b e l = ’ T r a i n i n g acc ’)
p l t . p l o t (epochs , v a l a c c , ’ b ’ , l a b e l = ’ V a l i d a t i o n acc ’)
p l t . x l a b e l (’ Epoch ’)
p l t . y l a b e l (’ Accury ’)
p l t . g r i d ()
p l t . t i t l e (’ T r a i n i n g and v a l i d a t i o n a c c u r a c y ’)
p l t . l e g e n d ()
p l t . t i g h t l a y o u t ()
i f w r i t e f i t f i l e s :

p l t . s a v e f i g (l o g b a s e + ’−acc . png ’)
p l t . c l o s e (f i g)

81

CHAPTER 5. IMPLEMENTATION

e xc ep t KeyError :
m a x v a l a c c = np . nan

i f n ==1: # e l s e i t j u s t s t a y s t h e same .
median = np . nan

epoch of max = −1

r e s u l t l i n e = ’\ t { : . 5 f }\ t { : . 5 f }\ t { : 3 d}\ t { : 3 d} ’ . format (
max va l acc , median , d u r a t i o n , epoch of max)

p r i n t (’ ’ + r e s u l t l i n e)
wi th open (o p t i l o g n a m e , ’ a ’) a s l o g f i l e :

p r i n t (r e s u l t l i n e , f i l e = l o g f i l e , f l u s h =True)

P r e v e n t memory l e a k s
K. c l e a r s e s s i o n ()
t f . r e s e t d e f a u l t g r a p h ()

n += 1
break

After finding the model with the best validation accuracy scores it needs to be evaluated on
the test set. The functions in the following script can load pre-trained models and evaluate
certain test sets with them. There is also a function the get the wrongly classified images of a
test set.
’ ’ ’
E v a l u a t e a p r e t r a i n e d model on t h e t e s t s e t

T e s t e d w i t h WinPython64 − 3 . 7 . 0 . 2 .

Au thor : Laura Peham <l a u r a . peham@recendt . a t>
’ ’ ’

import k e r a s
from k e r a s . p r e p r o c e s s i n g . image import I m a g e D a t a G e n e r a t o r
from PIL import Image
import numpy as np
from sk image import t r a n s f o r m
import os
from s t a t i s t i c s import mean

E v a l u a t e t h e model on a t e s t s e t
The image d i m e n s i o n s need t o be e q u i v a l e n t t o t h e ones t h e model has been t r a i n e d w i t h
def e v a l u a t e (mode l pa th , t e s t d i r , img rows , i m g c o l s) :

model = k e r a s . models . l o a d m o d e l (m o d e l p a t h)

d a t a g e n = I m a g e D a t a G e n e r a t o r (r e s c a l e = 1 . / 2 5 5)
t e s t g e n e r a t o r = d a t a g e n . f l o w f r o m d i r e c t o r y (t e s t d i r , t a r g e t s i z e = (img rows , i m g c o l s
) , co lo r mode = ’ g r a y s c a l e ’ , b a t c h s i z e = 32 , c l a s s m o d e = ’ c a t e g o r i c a l ’)

t e s t l o s s , t e s t a c c = model . e v a l u a t e g e n e r a t o r (t e s t g e n e r a t o r , s t e p s = l e n (

82

CHAPTER 5. IMPLEMENTATION

t e s t g e n e r a t o r) , v e r b o s e = 1)
p r i n t (’ t e s t l o s s = ’ , t e s t l o s s)
p r i n t (’ t e s t a c c = ’ , t e s t a c c)
re turn ([t e s t l o s s , t e s t a c c])

R e t u r n s t h e c l a s s l a b e l s and i t ’ s p r e d i c i t o n p r o b a b i l i t i e s o f a t e s t s e t p r e d i c t e d by a
pre−t r a i n e d model

The image d i m e n s i o n s need t o be e q u i v a l e n t t o t h e ones t h e model has been t r a i n e d w i t h
def p r e d i c t (mode l pa th , t e s t d i r , img rows , i m g c o l s) :

model = k e r a s . models . l o a d m o d e l (m o d e l p a t h)

d a t a g e n = I m a g e D a t a G e n e r a t o r (r e s c a l e = 1 . / 2 5 5)
t e s t g e n e r a t o r = d a t a g e n . f l o w f r o m d i r e c t o r y (t e s t d i r , t a r g e t s i z e = (img rows , i m g c o l s
) , co lo r mode = ’ g r a y s c a l e ’ , b a t c h s i z e = 32 , c l a s s m o d e = ’ c a t e g o r i c a l ’ , s h u f f l e =
F a l s e)

p red = model . p r e d i c t g e n e r a t o r (t e s t g e n e r a t o r , s t e p s = l e n (t e s t g e n e r a t o r) , v e r b o s e = 1)
l a b e l s = t e s t g e n e r a t o r . c l a s s e s
re turn (pred , l a b e l s)

R e t u r n s t h e c l a s s l a b e l s and i t ’ s p r e d i c i t o n p r o b a b i l i t i e s o f one s i n g l e i n p u t image
p r e d i c t e d by a pre−t r a i n e d model

The image d i m e n s i o n s need t o be e q u i v a l e n t t o t h e ones t h e model has been t r a i n e d w i t h
def p r e d i c t O n e (mode l pa th , image pa th , img rows , i m g c o l s) :

model = k e r a s . models . l o a d m o d e l (m o d e l p a t h)

np image = Image . open (i m a g e p a t h)
np image = np . a r r a y (np image) . a s t y p e (’ f l o a t 3 2 ’) / 255
np image = t r a n s f o r m . r e s i z e (np image , (img rows , i m g c o l s , 3))
np image = np . expand d ims (np image , a x i s =0)

p r i n t (model . p r e d i c t (np image))

R e t u r n s a l i s t w i t h t h e f a l s e p r e d i c t e d images
The i n p u t ’ npArr ’ needs t o be t h e f i r s t o u t p u t a r r a y o f ’ p r e d i c t () ’
def g e t F a l s e I m g (npArr , t e s t S e t) :

n ,m = npArr . shape
c l a s s e s = [’ g r e e n ’ , ’ g r ey ’ , ’ r e d ’ , ’ t r a n s ’]
f a l s e I m g = []
i = 0
c l a s s N = 0
f o r c l a s s in c l a s s e s :

c l a s s P = os . p a t h . j o i n (t e s t S e t , c l a s s)
f i l e s = [f f o r f in os . l i s t d i r (c l a s s P)]
f o r j in range (i , i + l e n (f i l e s)) :

i f (npArr [j] [c l a s s N] < 0 . 5) :
f a l s e I m g . append (f i l e s [j−i])

i += l e n (f i l e s)
c l a s s N += 1

re turn (f a l s e I m g)

83

CHAPTER 5. IMPLEMENTATION

To train a random forest and support vector classifier the chosen features needs to be extracted
from the image patches. For an OCT-image first the object border is flattened and bad areas
are cropped and than it is split into several patches of a certain size. The features of these
patches are then used to train a model.
”””
T h i s s c r i p t i s f o r c l a s s i f y i n g OCT images w . r . t . t h e i r m a t e r i a l w i t h Random F o r e s t s and

S u p p o r t V e c t o r Machines
T h e r e f o r e f e a t u r e s need t o be e x t r a c t e d o u t o f image p a t c h e s

T e s t e d w i t h WinPython64 − 3 . 7 . 0 . 2 .

Au thor : Laura Peham <l a u r a . peham@recendt . a t>
”””
import numpy as np
from PIL import Image
import s t a t i s t i c s
import os
from random import seed , r a n d r a n g e
seed (1)

Normal i z e t h e OCT−image s . t . t h e upper bo rd er i s f o r e v e r y column t h e f i r s t p i x e l b r i g h t e r
than 100

and t h e image i s o n l y 50 p i x e l s h igh as no more i s needed t o c r e a t e t h e 50 x50 p a t c h e s
S o r t o u t lower s l o p e s and d e f e c t s as t h e r e i s no i m p o r t a n t i n f o r m a t i o n under t h e bo rd er

t h e r e
def norma l i ze Img (img) :

image = np . a r r a y (Image . open (img))
In t h e upper image t h e r e are o f t e n v e r y b r i g h t areas , so crop t h e f i r s t 40 l i n e s
image = image [4 0 : , :]

t h r e s h o l d s = []
f o r i in range (0 , image . shape [1]) :

f o r j in range (0 , image . shape [0]) :
i f image [j] [i] > 100 : # g r a y s c a l e t h r e s h o l d , found o u t a f t e r l o o k i n g a t

d i f f e r e n t images
t h r e s h o l d s . append (j)
break

i f j == image . shape [0]−1: # i f i t n e v e r g e t s b r i g h t enough
t h r e s h o l d s . append (image . shape [0])

median = s t a t i s t i c s . median (t h r e s h o l d s) # t o g e t an i d e a what i s t o o low f o r t h r e s h o l d
t h r e s = t h r e s h o l d s [0]
haveArray = F a l s e
f o r i in range (0 , image . shape [1]) :

t h r e s = t h r e s h o l d s [i]
i f t h r e s < (median + 100) and t h r e s + 50 < image . shape [0] : # To s o r t o u t t o o low

v a l u e s (j u s t 100 here as s u r f a c e i s more or l e s s s t r a i g h t)
i f haveArray == F a l s e :

normalImg = np . a r r a y (image [t h r e s : t h r e s +50 , i])
haveArray = True

e l s e :
normalImg = np . c o l u m n s t a c k ((normalImg , image [t h r e s : t h r e s +50 , i]))

84

CHAPTER 5. IMPLEMENTATION

re turn (normalImg)

S p l i t t h e (n o r m a l i z e d) image i n t o 50 x50 p a t c h e s (as many as w i l l f i t t h e r e)
def g e t P a t c h e s (normalImg) :

i f r a n d r a n g e (2) == 0 :
normalImg = np . f l i p l r (normalImg) # Random f l i p p i n g t h e image h o r i z o n t a l l y

p a t c h e s = np . z e r o s ((5 0 , 5 0) , d t y p e =np . u i n t 8)
f o r i in range ((normalImg . shape [1]) / / 5 0) :

p a t c h e s = np . d s t a c k ((p a t c h e s , normalImg [: 5 0 , 50∗ i : 50∗ (i +1)]))
p a t c h e s = p a t c h e s [: , : , 1 :] # d e l e t e z e r o a r r a y

re turn (p a t c h e s)

R e t ur n t h e image f e a t u r e s g i v e n a 50 x50 p a t c h
def g e t P a t c h F e a t (p a t c h) :

mean = np . mean (p a t c h)
median = np . median (p a t c h)
v a r = np . v a r (p a t c h)
max = np . amax (p a t c h)
min = np . amin (p a t c h)

re turn ([mean , median , v a r , max , min])

R e t ur n a l i s t o f image f e a t u r e s and w r i t e them i n a l o g f i l e f o r a l l p a t c h e s o f a g i v e n
image

def g e t I m g F e a t (imgPath , dataName , c l a s s S e t) :
name = os . p a t h . s p l i t e x t (os . p a t h . basename (imgPath)) [0]
t r a i n D i r = os . p a t h . j o i n (’ image−f e a t u r e s ’ , dataName)
i f not os . p a t h . e x i s t s (t r a i n D i r) :

os . mkdir (t r a i n D i r)

s ave = os . p a t h . j o i n (t r a i n D i r , c l a s s S e t)
i f not os . p a t h . e x i s t s (s ave) :

os . mkdir (s ave)

logName = os . p a t h . j o i n (save , ’ f e a t u r e s . c sv ’)

h e a d e r = ’ name\ t n \ tmean\ tmed ian\ t v a r i a n c e \ tmax\ tmin ’
wi th open (logName , ’ a ’) a s l o g f i l e :

p r i n t (header , f i l e = l o g f i l e , f l u s h =True)

i m g F e a t u r e s = []
i m g P a t c h e s = g e t P a t c h e s (no rma l i ze Img (imgPath))
f o r i in range (i m g P a t c h e s . shape [2]) :

p a t c h = i m g P a t c h e s [: , : , i]

save t h e f e a t u r e s
f e a t = g e t P a t c h F e a t (p a t c h)
i m g F e a t u r e s . append (f e a t)
l i n e = ’{}\ t { : 3 d}\ t { : . 2 f }\ t { : . 2 f }\ t { : . 2 f }\ t { : . 2 f }\ t { : . 2 f } ’ . format (name , i , f e a t

[0] , f e a t [1] , f e a t [2] , f e a t [3] , f e a t [4])
w i th open (logName , ’ a ’) a s l o g f i l e :

85

CHAPTER 5. IMPLEMENTATION

p r i n t (l i n e , f i l e = l o g f i l e , f l u s h =True)

save t h e image p a t c h e s
pa tchImg = Image . f r o m a r r a y (p a t c h) . c o n v e r t (”L”)
pa tchImg . save (os . p a t h . j o i n (save , name + s t r (i) + ’ . png ’))

re turn ((i m g F e a t u r e s , i m g P a t c h e s . shape [2]))

Get a l i s t o f t h e images f e a t u r e s f o r a whole s e t o f images
def g e t F e a t u r e s (className , pa th , dataName , setName) :

c l a s s P a t h = os . p a t h . j o i n (pa th , c lassName)
c o l o r I m g s = [f f o r f in os . l i s t d i r (c l a s s P a t h)]
f e a t u r e s = []
numberPatch = [] # Save t h e numer o f p a t c h e s per image
c l a s s S e t = className + ’− ’ + setName # e . g . green−t r a i n , red−v a l i d a t i o n
p r i n t (’ E v a l u a t i n g ’ + c l a s s S e t + ’ . . . ’)
f o r img in c o l o r I m g s :

p a t h = os . p a t h . j o i n (c l a s s P a t h , img)
imgFea t = g e t I m g F e a t (pa th , dataName , c l a s s S e t)
f e a t u r e s . e x t e n d (imgFea t [0])
numberPatch . append (imgFea t [1])

re turn ((f e a t u r e s , numberPatch))

C re a t e t h e f e a t u r e−a r r a y s f o r t r a i n i n g , t e s t i n g and v a l i d a t i o n f o r a l l c l a s s e s
g i v e n an a l r e a d y s p l i t t e d d a t a s e t

def c r e a t e D a t a (da t a , dataName) :
c l a s s e s = [’ g r e e n ’ , ’ g r ey ’ , ’ r e d ’ , ’ t r a n s ’]

d a t a S a v e = os . p a t h . j o i n (’ t r a i n i n g−d a t a ’ , dataName)
i f not os . p a t h . e x i s t s (d a t a S a v e) :

os . mkdir (d a t a S a v e)

Check i f t h e a r r a y s a l r e a d y e x i s t −> j u s t l oad them i n s t e a d o f c r e a t i n g them aga in
n p d a t a = os . p a t h . j o i n (da taSave , ’ t r a i n X . npy ’)
i f os . p a t h . i s f i l e (n p d a t a) : # Assume t h a t i f one e x i s t s a l l w i l l e x i s t

t r a i n X = np . l o a d (os . p a t h . j o i n (da taSave , ’ t r a i n X . npy ’))
t r a i n Y = np . l o a d (os . p a t h . j o i n (da taSave , ’ t r a i n Y . npy ’))
t r a i n P a t N r = np . l o a d (os . p a t h . j o i n (da taSave , ’ t r a i n P a t N r . npy ’))
valX = np . l o a d (os . p a t h . j o i n (da taSave , ’ valX . npy ’))
valY = np . l o a d (os . p a t h . j o i n (da taSave , ’ valY . npy ’))
v a l P a t N r = np . l o a d (os . p a t h . j o i n (da taSave , ’ v a l P a t N r . npy ’))
t e s t X = np . l o a d (os . p a t h . j o i n (da taSave , ’ t e s t X . npy ’))
t e s t Y = np . l o a d (os . p a t h . j o i n (da taSave , ’ t e s t Y . npy ’))
t e s t P a t N r = np . l o a d (os . p a t h . j o i n (da taSave , ’ t e s t P a t N r . npy ’))

e l s e :
t r a i n X = []
t r a i n Y = []
valX = []
valY = []
t e s t X = []
t e s t Y = []
t r a i n P a t N r = []
v a l P a t N r = []

86

CHAPTER 5. IMPLEMENTATION

t e s t P a t N r = []
i = 0
f o r c l a s s in c l a s s e s :

t r a i n P a t h = os . p a t h . j o i n (da t a , ’ t r a i n ’)
f e a t = g e t F e a t u r e s (c l a s s , t r a i n P a t h , dataName , ’ t r a i n ’)
t r a i n F = np . a r r a y (f e a t [0])
t r a i n P a t N r . e x t e n d (f e a t [1])

v a l P a t h = os . p a t h . j o i n (da t a , ’ v a l i d a t i o n ’)
f e a t = g e t F e a t u r e s (c l a s s , v a l P a t h , dataName , ’ v a l i d a t i o n ’)
va lF = np . a r r a y (f e a t [0])
v a l P a t N r . e x t e n d (f e a t [1])

t e s t P a t h = os . p a t h . j o i n (da t a , ’ t e s t ’)
f e a t = g e t F e a t u r e s (c l a s s , t e s t P a t h , dataName , ’ t e s t ’)
t e s t F = np . a r r a y (f e a t [0])
t e s t P a t N r . e x t e n d (f e a t [1])

t r a i n X . e x t e n d (t r a i n F)
t r a i n Y . e x t e n d ([i]∗ np . shape (t r a i n F) [0])
valX . e x t e n d (va lF)
valY . e x t e n d ([i]∗ np . shape (va lF) [0])
t e s t X . e x t e n d (t e s t F)
t e s t Y . e x t e n d ([i]∗ np . shape (t e s t F) [0])

i +=1
Save t h e a r r a y s t o be a b l e t o use them aga in l a t e r
np . s ave (os . p a t h . j o i n (da taSave , ’ t r a i n X . npy ’) , t r a i n X)
np . s ave (os . p a t h . j o i n (da taSave , ’ t r a i n Y . npy ’) , t r a i n Y)
np . s ave (os . p a t h . j o i n (da taSave , ’ t r a i n P a t N r . npy ’) , t r a i n P a t N r)
np . s ave (os . p a t h . j o i n (da taSave , ’ valX . npy ’) , valX)
np . s ave (os . p a t h . j o i n (da taSave , ’ valY . npy ’) , valY)
np . s ave (os . p a t h . j o i n (da taSave , ’ v a l P a t N r . npy ’) , v a l P a t N r)
np . s ave (os . p a t h . j o i n (da taSave , ’ t e s t X . npy ’) , t e s t X)
np . s ave (os . p a t h . j o i n (da taSave , ’ t e s t Y . npy ’) , t e s t Y)
np . s ave (os . p a t h . j o i n (da taSave , ’ t e s t P a t N r . npy ’) , t e s t P a t N r)

re turn ([t r a i n X , t r a i n Y , t r a i n P a t N r , valX , valY , va lPa tNr , t e s t X , t e s t Y , t e s t P a t N r])

The script for the random forest classfier includes two functions: the tuning function is similar
to the one of deep learning and it can be used to find the best hyperparamters for a given task.
The train function can be used to retrain a model with certain parameters and then instantly
evaluate it on the test set. For this thesis after finding the best hyperparameter setting the
model has been retrained on the training and validation data and then evaluated on the test
set.
”””
T h i s s c r i p t i s f o r c l a s s i f y i n g OCT images w . r . t . t h e i r m a t e r i a l w i t h a random f o r e s t

c l a s s i f i e r

T e s t e d w i t h WinPython64 − 3 . 7 . 0 . 2 .

87

CHAPTER 5. IMPLEMENTATION

Author : Laura Peham <l a u r a . peham@recendt . a t>
”””

from s k l e a r n . ensemble import R a n d o m F o r e s t C l a s s i f i e r
from i m a g e f e a t u r e s import c r e a t e D a t a
from s t a t i s t i c s import median
from s k l e a r n . e x t e r n a l s import j o b l i b
import os
import t ime
import d a t e t i m e
from random import seed , r a n d r a n g e
from numpy import nan
import numpy as np

def getMaxIndex (a r r a y) :
maxIndex = 0
f o r i in range (1 , l e n (a r r a y)) :

i f a r r a y [i] > a r r a y [maxIndex] :
maxIndex = i

re turn (maxIndex)

def t r a i n R F () :
d a t a = ’ p a t h / t o / d a t a ’
t r a inName = ’ t r a i n i n g n a m e ’
dataName = ’ da ta name ’

t r a i n X , t r a i n Y , t r a i n P a t N r , valX , valY , va lPa tNr , t e s t X , t e s t Y , t e s t P a t N r = c r e a t e D a t a (
da t a , dataName)

Uncomment t h e f o l l o w i n g l i n e s and comment o u t t h e n e x t two i f a p r e t r a i n e d model
s h o u l d be load i n s t e a d o f t r a i n i n g a new one
m o d e l p a t h = ’ pa th / t o / p r e t r a i n e d / model ’
c l f = j o b l i b . l oad (m o d e l p a t h)

c l f = R a n d o m F o r e s t C l a s s i f i e r (n e s t i m a t o r s =32 , max depth = 36 , m i n s a m p l e s s p l i t = 1 ,
m i n s a m p l e s l e a f = 4 , m a x f e a t u r e s = 2 , r a n d o m s t a t e =0)
c l f . f i t (t r a i n X , t r a i n Y)

save = os . p a t h . j o i n (’ image−f e a t u r e s ’ , t r a inName + ’ . sav ’)
j o b l i b . dump (c l f , s ave)

p r i n t (c l f . f e a t u r e i m p o r t a n c e s)

i = 0
va l ImgProb = []
valImgY = []
f o r pa tNr in v a l P a t N r :

valImgY . append (valY [i])

valImgX = valX [i : i + pa tNr]
v a l P r o b = c l f . p r e d i c t p r o b a (valImgX)
c l a s s 0 = [p [0] f o r p in v a l P r o b]
c l a s s 1 = [p [1] f o r p in v a l P r o b]
c l a s s 2 = [p [2] f o r p in v a l P r o b]

88

CHAPTER 5. IMPLEMENTATION

c l a s s 3 = [p [3] f o r p in v a l P r o b]
p red = [median (c l a s s 0) , median (c l a s s 1) , median (c l a s s 2) , median (c l a s s 3)]
va l ImgProb . append (p red)
i += pa tNr

va l ImgPred = []
f o r i in range (l e n (va l ImgProb)) :

va l ImgPred . append (getMaxIndex (va l ImgProb [i]))

i = 0
t e s t I m g P r o b = []
t e s t ImgY = []
f o r pa tNr in t e s t P a t N r :

t e s t ImgY . append (t e s t Y [i])

t e s t ImgX = t e s t X [i : i + pa tNr]
t e s t P r o b = c l f . p r e d i c t p r o b a (t e s t ImgX)
c l a s s 0 = [p [0] f o r p in t e s t P r o b]
c l a s s 1 = [p [1] f o r p in t e s t P r o b]
c l a s s 2 = [p [2] f o r p in v a l P r o b]
c l a s s 3 = [p [3] f o r p in v a l P r o b]
p red = [median (c l a s s 0) , median (c l a s s 1) , median (c l a s s 2) , median (c l a s s 3)]
t e s t I m g P r o b . append (p red)
i += pa tNr

t e s t I m g P r e d = []
f o r i in range (l e n (t e s t I m g P r o b)) :

t e s t I m g P r e d . append (getMaxIndex (t e s t I m g P r o b [i]))

v a l a c c = sum ([i == j f o r i , j in z i p (va l ImgPred , valImgY)]) / l e n (va l ImgPred)
p r i n t (’ V a l i d a t i o n a c c u r a c y : ’ + s t r (v a l a c c))
p a t c h a c c = c l f . s c o r e (valX , valY)
p r i n t (’ V a l i d a t i o n a c c u r a c y f o r i n d i v i d u a l p a t c h e s : ’ + s t r (p a t c h a c c))
p a t c h a c c t r a i n = c l f . s c o r e (t r a i n X , t r a i n Y)
p r i n t (’ T r a i n i n g a c c u r a c y f o r i n d i v i d u a l p a t c h e s : ’ + s t r (p a t c h a c c t r a i n))
t e s t a c c = sum ([i == j f o r i , j in z i p (t e s t I m g P r e d , t e s t ImgY)]) / l e n (t e s t I m g P r e d)
p r i n t (’ T e s t a c c u r a c y : ’ + s t r (t e s t a c c))
p a t c h a c c t e s t = c l f . s c o r e (t e s t X , t e s t Y)
p r i n t (’ T e s t a c c u r a c y f o r i n d i v i d u a l p a t c h e s : ’ + s t r (p a t c h a c c t e s t))

f i l e = open (os . p a t h . j o i n (’ image−f e a t u r e s ’ , t r a inName + ’ . t x t ’) , ’w’)
f i l e . w r i t e (’ F e a t u r e I m p o r t a n c e s : ’ + s t r (c l f . f e a t u r e i m p o r t a n c e s) + ’\n ’)
f i l e . w r i t e (’ V a l i d a t i o n Accuracy : ’ + s t r (v a l a c c) + ’\n ’)
f i l e . w r i t e (’ V a l i d a t i o n Accuracy f o r i n d i v i d u a l p a t c h e s : ’ + s t r (p a t c h a c c) + ’\n ’)
f i l e . w r i t e (’ T r a i n i n g a c c u r a c y f o r i n d i v i d u a l p a t c h e s : ’ + s t r (p a t c h a c c t r a i n) + ’\n ’)
f i l e . w r i t e (’ T e s t Accuracy : ’ + s t r (t e s t a c c) + ’\n ’)
f i l e . w r i t e (’ T e s t Accuracy f o r i n d i v i d u a l p a t c h e s : ’ + s t r (p a t c h a c c t e s t))
f i l e . c l o s e ()

Tuning p a r a m e t e r s a c c o r d i n g t o : h t t p s : / / medium . com / a l l−t h i n g s−a i / in−depth−parameter−t u n i n g
−f o r−random−f o r e s t−d67bb7e920d

def tun ingRF () :
d a t a = ’ p a t h / t o / d a t a ’
dataName = ’ da ta name ’

89

CHAPTER 5. IMPLEMENTATION

program = os . p a t h . basename (f i l e)
v e r s i o n = ’ v1−0−0 ’

u s e o p t i m a l h y p e r p a r a m s = bool (0)
i f not u s e o p t i m a l h y p e r p a r a m s :

v e r s i o n += ’−randompars ’

o p t i l o g d i r = ’ o p t i−l o g s / ’
o p t i l o g i d = (’ o p t i R F ’ + ’ ’ + d a t e t i m e . d a t e t i m e . now () . s t r f t i m e (’%Y−%m−%d %H−%M’) + ’

’ + v e r s i o n)
o p t i l o g n a m e = o p t i l o g d i r + o p t i l o g i d + ’ . c sv ’
os . mkdir (o p t i l o g d i r + o p t i l o g i d)

o p t i m a l m a x v a l a c c = 0 . 9 0
n = 1
nmax = 0
v a l a c c l i s t = []
h e a d e r = ’ n\ tnmax\ t n e s t i m a t o r s \ t m a x d e p t h \ t m i n s a m p l e s s p l i t \ t m i n s a m p l e s l e a f \
t m a x f e a t u r e s \ t v a l a c c \ t v a l a c c−p a t c h e s \ t t r a i n i n g a c c −p a t c h e s \ t m i n s ’
whi le True :

i f n % 6 == 1 : # s . t . even w i t h CUDA l o g messages , t h e r e ’ s a lways one on s c r e e n .
p r i n t (program + ’ ’ + v e r s i o n + ’ , l o g s : ’ , o p t i l o g i d)
p r i n t (h e a d e r)

i f n == 1 :
wi th open (o p t i l o g n a m e , ’ a ’) a s l o g f i l e :

p r i n t (program + ’− ’ + v e r s i o n , f i l e = l o g f i l e)
p r i n t (header , f i l e = l o g f i l e , f l u s h =True)

l o g f i l e b a s e = o p t i l o g i d + ’ { : 03 d} ’ . format (n)
l o g b a s e = o p t i l o g d i r + o p t i l o g i d + ’ / ’ + l o g f i l e b a s e

i f u s e o p t i m a l h y p e r p a r a m s :
s eed (n)

Hyperparame te r s :
n e s t i m a t o r = 32
max dep th = 36
m i n s a m p l e s s p l i t = 1
m i n s a m p l e s l e a f = 4
m a x f e a t u r e = 2

e l s e :
s eed (l o g f i l e b a s e)

n e s t i m a t o r s = [1 , 2 , 4 , 8 , 16 , 32 , 64 , 100 , 128 , 200 , 256]
max dep ths = np . l i n s p a c e (1 , 30 , 30 , e n d p o i n t =True)
m i n s a m p l e s s p l i t s = [2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0]
m i n s a m p l e s l e a f s = [1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0]
m a x f e a t u r e s = [2 , 3 , 4 , 5]

Randomly choose hyper−p a r a m e t e r s :
r = r a n d r a n g e (1 1)
n e s t i m a t o r = n e s t i m a t o r s [r]
r = r a n d r a n g e (3 0)
max dep th = max dep ths [r]
r = r a n d r a n g e (9)

90

CHAPTER 5. IMPLEMENTATION

m i n s a m p l e s s p l i t = m i n s a m p l e s s p l i t s [r]
r = r a n d r a n g e (1 0)
m i n s a m p l e s l e a f = m i n s a m p l e s l e a f s [r]
r = r a n d r a n g e (4)
m a x f e a t u r e = m a x f e a t u r e s [r]

l i n e = ’ { : 3 d}\ t { : 3 d}\ t { : 3 d}\ t { : 8 s}\ t { : 3 d}\ t { : 3 d}\ t { : 8 s} ’ . format (n , nmax ,
n e s t i m a t o r , s t r (max dep th) , m i n s a m p l e s s p l i t , m i n s a m p l e s l e a f , s t r (m a x f e a t u r e))

p r i n t (l i n e , end = ’ ’)
w i th open (o p t i l o g n a m e , ’ a ’) a s l o g f i l e :

p r i n t (l i n e , end= ’ ’ , f i l e = l o g f i l e , f l u s h =True)

t r a i n X , t r a i n Y , t r a i n P a t N r , valX , valY , va lPa tNr , t e s t X , t e s t Y , t e s t P a t N r =
c r e a t e D a t a (da t a , dataName)

c l f = R a n d o m F o r e s t C l a s s i f i e r (n e s t i m a t o r s = n e s t i m a t o r , max depth = max depth ,
m i n s a m p l e s s p l i t = m i n s a m p l e s s p l i t , m i n s a m p l e s l e a f = m i n s a m p l e s l e a f ,
m a x f e a t u r e s = m a x f e a t u r e , r a n d o m s t a t e =0)

s t a r t = t ime . t ime ()
c l f . f i t (t r a i n X , t r a i n Y)
d u r a t i o n = round ((t ime . t ime () − s t a r t) / 6 0)

t r y :
i = 0
va l ImgProb = []
valImgY = []
f o r pa tNr in v a l P a t N r :

valImgY . append (valY [i])

valImgX = valX [i : i + pa tNr]
v a l P r o b = c l f . p r e d i c t p r o b a (valImgX)
c l a s s 0 = [p [0] f o r p in v a l P r o b]
c l a s s 1 = [p [1] f o r p in v a l P r o b]
c l a s s 2 = [p [2] f o r p in v a l P r o b]
c l a s s 3 = [p [3] f o r p in v a l P r o b]
p red = [median (c l a s s 0) , median (c l a s s 1) , median (c l a s s 2) , median (c l a s s 3)]
va l ImgProb . append (p red)
i += pa tNr

va l ImgPred = []
f o r i in range (l e n (va l ImgProb)) :

va l ImgPred . append (getMaxIndex (va l ImgProb [i]))

v a l a c c = sum ([i == j f o r i , j in z i p (va l ImgPred , valImgY)]) / l e n (va l ImgPred)
p a t c h a c c = c l f . s c o r e (valX , valY)
p a t c h a c c t r a i n = c l f . s c o r e (t r a i n X , t r a i n Y)

v a l a c c l i s t . append (v a l a c c)

i f v a l a c c > o p t i m a l m a x v a l a c c :
nmax = n
o p t i m a l m a x v a l a c c = v a l a c c

e xc ep t KeyError :

91

CHAPTER 5. IMPLEMENTATION

v a l a c c = nan

Save t h e model
j o b l i b . dump (c l f , l o g b a s e + ’ . hdf5 ’)

r e s u l t l i n e = ’\ t { : . 5 f }\ t { : . 5 f }\ t { : . 5 f }\ t { : 3 d} ’ . format (
v a l a c c , p a t c h a c c , p a t c h a c c t r a i n , d u r a t i o n)

p r i n t (’ ’ + r e s u l t l i n e)
wi th open (o p t i l o g n a m e , ’ a ’) a s l o g f i l e :

p r i n t (r e s u l t l i n e , f i l e = l o g f i l e , f l u s h =True)

n += 1

The script for the support vector machine is nearly equivalent to the one of random forests.
”””
T h i s s c r i p t i s f o r c l a s s i f y i n g OCT images w . r . t . t h e i r m a t e r i a l w i t h a SVM c l a s s i f i e r

T e s t e d w i t h WinPython64 − 3 . 7 . 0 . 2 .

Au thor : Laura Peham <l a u r a . peham@recendt . a t>
”””

from s k l e a r n . svm import SVC, LinearSVC
from s k l e a r n . p r e p r o c e s s i n g import S t a n d a r d S c a l e r
from i m a g e f e a t u r e s import c r e a t e D a t a
from s t a t i s t i c s import median , mean
import j o b l i b
import os
import t ime
import d a t e t i m e
from random import seed , r a n d r a n g e
from numpy import nan

def getMaxIndex (a r r a y) :
maxIndex = 0
f o r i in range (1 , l e n (a r r a y)) :

i f a r r a y [i] > a r r a y [maxIndex] :
maxIndex = i

re turn (maxIndex)

def t r a inSVC () :
d a t a = ’ p a t h / t o / d a t a ’
t r a inName = ’ t r a i n i n g n a m e ’
dataName = ’ da ta name ’

t r a i n X , t r a i n Y , t r a i n P a t N r , valX , valY , va lPa tNr , t e s t X , t e s t Y , t e s t P a t N r = c r e a t e D a t a (
da t a , dataName)

Uncomment t h e f o l l o w i n g l i n e s and comment o u t t h e n e x t two i f a p r e t r a i n e d model
s h o u l d be load i n s t e a d o f t r a i n i n g a new one
m o d e l p a t h = ’ pa th / t o / p r e t r a i n e d / model ’

92

CHAPTER 5. IMPLEMENTATION

c l f = j o b l i b . l oad (m o d e l p a t h)

c l f = SVC(C = 500 , gamma = 0 . 0 1 , v e r b o s e = True)
c l f . f i t (t r a i n X , t r a i n Y)

save = os . p a t h . j o i n (’ image−f e a t u r e s ’ , t r a inName + ’ . sav ’)
j o b l i b . dump (c l f , s ave)

i = 0
va l ImgProb = []
valImgY = []
f o r pa tNr in v a l P a t N r :

valImgY . append (valY [i])

valImgX = valX [i : i + pa tNr]
v a l P r o b = c l f . p r e d i c t p r o b a (valImgX)
c l a s s 0 = [p [0] f o r p in v a l P r o b]
c l a s s 1 = [p [1] f o r p in v a l P r o b]
c l a s s 2 = [p [2] f o r p in v a l P r o b]
c l a s s 3 = [p [3] f o r p in v a l P r o b]
p red = [median (c l a s s 0) , median (c l a s s 1) , median (c l a s s 2) , median (c l a s s 3)]
va l ImgProb . append (p red)
i += pa tNr

va l ImgPred = []
f o r i in range (l e n (va l ImgProb)) :

va l ImgPred . append (getMaxIndex (va l ImgProb [i]))

i = 0
t e s t I m g P r o b = []
t e s t ImgY = []
f o r pa tNr in t e s t P a t N r :

t e s t ImgY . append (t e s t Y [i])

t e s t ImgX = t e s t X [i : i + pa tNr]
t e s t P r o b = c l f . p r e d i c t p r o b a (t e s t ImgX)
c l a s s 0 = [p [0] f o r p in v a l P r o b]
c l a s s 1 = [p [1] f o r p in v a l P r o b]
c l a s s 2 = [p [2] f o r p in v a l P r o b]
c l a s s 3 = [p [3] f o r p in v a l P r o b]
p red = [median (c l a s s 0) , median (c l a s s 1) , median (c l a s s 2) , median (c l a s s 3)]
t e s t I m g P r o b . append (p red)
i += pa tNr

t e s t I m g P r e d = []
f o r i in range (l e n (t e s t I m g P r o b)) :

t e s t I m g P r e d . append (getMaxIndex (t e s t I m g P r o b [i]))

v a l a c c = sum ([i == j f o r i , j in z i p (va l ImgPred , valImgY)]) / l e n (va l ImgPred)
p r i n t (’ V a l i d a t i o n a c c u r a c y : ’ + s t r (v a l a c c))
p a t c h a c c = c l f . s c o r e (valX , valY)
p r i n t (’ V a l i d a t i o n a c c u r a c y f o r i n d i v i d u a l p a t c h e s : ’ + s t r (p a t c h a c c))
p a t c h a c c t r a i n = c l f . s c o r e (t r a i n X , t r a i n Y)
p r i n t (’ T r a i n i n g a c c u r a c y f o r i n d i v i d u a l p a t c h e s : ’ + s t r (p a t c h a c c t r a i n))
t e s t a c c = sum ([i == j f o r i , j in z i p (t e s t I m g P r e d , t e s t ImgY)]) / l e n (t e s t I m g P r e d)
p r i n t (’ T e s t a c c u r a c y : ’ + s t r (t e s t a c c))

93

CHAPTER 5. IMPLEMENTATION

p a t c h a c c t e s t = c l f . s c o r e (t e s t X , t e s t Y)
p r i n t (’ T e s t a c c u r a c y f o r i n d i v i d u a l p a t c h e s : ’ + s t r (p a t c h a c c t e s t))

f i l e = open (os . p a t h . j o i n (’ image−f e a t u r e s ’ , t r a inName + ’ . t x t ’) , ’w’)
f i l e . w r i t e (’ V a l i d a t i o n Accuracy : ’ + s t r (v a l a c c) + ’\n ’)
f i l e . w r i t e (’ V a l i d a t i o n Accuracy f o r i n d i v i d u a l p a t c h e s : ’ + s t r (p a t c h a c c) + ’\n ’)
f i l e . w r i t e (’ T r a i n i n g a c c u r a c y f o r i n d i v i d u a l p a t c h e s : ’ + s t r (p a t c h a c c t r a i n) + ’\n ’)
f i l e . w r i t e (’ T e s t Accuracy : ’ + s t r (t e s t a c c) + ’\n ’)
f i l e . w r i t e (’ T e s t Accuracy f o r i n d i v i d u a l p a t c h e s : ’ + s t r (p a t c h a c c t e s t))
f i l e . c l o s e ()

Tuning p a r a m e t e r s a c c o r d i n g t o : h t t p s : / / medium . com / a l l−t h i n g s−a i / in−depth−parameter−t u n i n g
−f o r−svc −758215394769

def tuningSVC () :
d a t a = ’ p a t h / t o / d a t a ’
dataName = ’ da ta name ’

program = os . p a t h . basename (f i l e)
v e r s i o n = ’ v1−0−0 ’

u s e o p t i m a l h y p e r p a r a m s = bool (0)
i f not u s e o p t i m a l h y p e r p a r a m s :

v e r s i o n += ’−randompars ’

o p t i l o g d i r = ’ o p t i−l o g s / ’
o p t i l o g i d = (’ op t i SVC ’ + ’ ’ + d a t e t i m e . d a t e t i m e . now () . s t r f t i m e (’%Y−%m−%d %H−%M’) +
’ ’ + v e r s i o n)
o p t i l o g n a m e = o p t i l o g d i r + o p t i l o g i d + ’ . c sv ’
os . mkdir (o p t i l o g d i r + o p t i l o g i d)

o p t i m a l m a x v a l a c c = 0 . 9 0
n = 1
nmax = 0
v a l a c c l i s t = []
h e a d e r = ’ n\ tnmax\ t c \ t k e r n e l \ tgammaORpenalty\ t d u a l (l i n e a r) \ t v a l a c c \ t v a l a c c−p a t c h e s \
t t r a i n i n g a c c −p a t c h e s \ t m i n s ’
whi le True :

i f n % 6 == 1 : # s . t . even w i t h CUDA l o g messages , t h e r e ’ s a lways one on s c r e e n .
p r i n t (program + ’ ’ + v e r s i o n + ’ , l o g s : ’ , o p t i l o g i d)
p r i n t (h e a d e r)

i f n == 1 :
wi th open (o p t i l o g n a m e , ’ a ’) a s l o g f i l e :

p r i n t (program + ’− ’ + v e r s i o n , f i l e = l o g f i l e)
p r i n t (header , f i l e = l o g f i l e , f l u s h =True)

l o g f i l e b a s e = o p t i l o g i d + ’ { : 03 d} ’ . format (n)
l o g b a s e = o p t i l o g d i r + o p t i l o g i d + ’ / ’ + l o g f i l e b a s e

i f u s e o p t i m a l h y p e r p a r a m s :
s eed (n)

Hyperparame te r s :
c = 500
k e r n e l = ’ r b f ’

94

CHAPTER 5. IMPLEMENTATION

gamma = 0 . 0 1
p e n a l t y = ’ l 2 ’
d u a l = 0

e l s e :
s eed (l o g f i l e b a s e)

Randomly choose hyper−p a r a m e t e r s :
cs = [0 . 1 , 0 . 2 , 0 . 5 , 1 , 2 , 5 , 10 , 20 , 50 , 100 , 200 , 500 , 1000]
d u a l = r a n d r a n g e (2)
gammas = [0 . 0 1 , 0 . 1 , 1 , 10 , 100]

r = r a n d r a n g e (1 3)
c = cs [r]
r = r a n d r a n g e (2)
i f r == 0 :

k e r n e l = ’ l i n e a r ’
e l s e :

k e r n e l = ’ r b f ’
r = r a n d r a n g e (5)
gamma = gammas [r]
r = r a n d r a n g e (2)
i f r == 0 :

p e n a l t y = ’ l 1 ’
e l s e :

p e n a l t y = ’ l 2 ’

i f k e r n e l == ’ l i n e a r ’ :
l i n e = ’ { : 3 d}\ t { : 3 d}\ t { : . 2 f }\ t { : 8 s}\ t { : 8 s}\ t { : 3 d} ’ . format (n , nmax , c , k e r n e l ,

p e n a l t y , d u a l)
e l s e :

l i n e = ’ { : 3 d}\ t { : 3 d}\ t { : . 2 f }\ t { : 8 s}\ t { : 8 s}\ t ’ . format (n , nmax , c , k e r n e l , s t r (
gamma))

p r i n t (l i n e , end = ’ ’)
w i th open (o p t i l o g n a m e , ’ a ’) a s l o g f i l e :

p r i n t (l i n e , end= ’ ’ , f i l e = l o g f i l e , f l u s h =True)

t r a i n X , t r a i n Y , t r a i n P a t N r , valX , valY , va lPa tNr , t e s t X , t e s t Y , t e s t P a t N r =
c r e a t e D a t a (da t a , dataName)

i f k e r n e l == ’ l i n e a r ’ :
c l f = LinearSVC (C = c , p e n a l t y = p e n a l t y , d u a l = bool (d u a l) , v e r b o s e = True)

e l s e :
c l f = SVC(C = c , k e r n e l = k e r n e l , gamma = gamma , v e r b o s e = True)

s c a l e r = S t a n d a r d S c a l e r () . f i t (t r a i n X)
s c a l e r . t r a n s f o r m (t r a i n X)
s c a l e r . t r a n s f o r m (valX)

s t a r t = t ime . t ime ()
c l f . f i t (t r a i n X , t r a i n Y)
d u r a t i o n = round ((t ime . t ime () − s t a r t) / 6 0)

t r y :
i = 0
va l ImgProb = []

95

CHAPTER 5. IMPLEMENTATION

valImgY = []
f o r pa tNr in v a l P a t N r :

valImgY . append (valY [i])

valImgX = valX [i : i + pa tNr]
v a l P r o b = c l f . p r e d i c t p r o b a (valImgX)
c l a s s 0 = [p [0] f o r p in v a l P r o b]
c l a s s 1 = [p [1] f o r p in v a l P r o b]
c l a s s 2 = [p [2] f o r p in v a l P r o b]
c l a s s 3 = [p [3] f o r p in v a l P r o b]
p red = [median (c l a s s 0) , median (c l a s s 1) , median (c l a s s 2) , median (c l a s s 3)]
va l ImgProb . append (p red)
i += pa tNr

va l ImgPred = []
f o r i in range (l e n (va l ImgProb)) :

va l ImgPred . append (getMaxIndex (va l ImgProb [i]))

v a l a c c = sum ([i == j f o r i , j in z i p (va l ImgPred , valImgY)]) / l e n (va l ImgPred)
p a t c h a c c = c l f . s c o r e (valX , valY)
p a t c h a c c t r a i n = c l f . s c o r e (t r a i n X , t r a i n Y)

v a l a c c l i s t . append (v a l a c c)

i f v a l a c c > o p t i m a l m a x v a l a c c :
nmax = n
o p t i m a l m a x v a l a c c = v a l a c c

e xc ep t KeyError :
v a l a c c = nan

j o b l i b . dump (c l f , l o g b a s e + ’ . hdf5 ’)

r e s u l t l i n e = ’\ t { : . 5 f }\ t { : . 5 f }\ t { : . 5 f }\ t { : 3 d} ’ . format (
v a l a c c , p a t c h a c c , p a t c h a c c t r a i n , d u r a t i o n)

p r i n t (’ ’ + r e s u l t l i n e)
wi th open (o p t i l o g n a m e , ’ a ’) a s l o g f i l e :

p r i n t (r e s u l t l i n e , f i l e = l o g f i l e , f l u s h =True)

n += 1

96

Bibliography

[1] C. C. Aggarwal. Neural Networks and Deep Learning. A Textbook. Springer, Heidel-
berg, 2018.

[2] S. V. Alex Smola. Introduction to Machine Learning. Cambridge University Press,
Cambridge, 2008.

[3] M. Awais, H. Müller, and F. Meriaudeau. Classification of SD-OCT Images Using
Deep Learning Approach. In 2017 IEEE International Conference on Signal and Image
Processing Applications (ICSIPA), pages 489–492, 2017.

[4] A. Botchkarev. Performance Metrics (Error Measures) in Machine Learning Regres-
sion, Forecasting and Prognostics: Properties and Typology. ArXiv, abs/1809.03006,
2018.

[5] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regres-
sion Trees. Taylor & Francis, London, 1984.

[6] J. Bruna and S. Mallat. Classification with Scattering Operators. ArXiv, abs/1011.3023,
2010.

[7] I. Bussel, G. Wollstein, and J. Schuman. OCT for Glaucoma Diagnosis, Screening and
Detection of Glaucoma Progression. The British journal of ophthalmology, 98, 2013.

[8] F. Chollet. Deep Learning with Python. Manning Publications Co., Greenwich, CT,
USA, 2017.

[9] W. Cong, X. Intes, and G. Wang. Optical Tomographic Imaging for Breast Cancer
Detection. Journal of Biomedical Optics, 22, 2017.

[10] R. F. de Mello and M. A. Ponti. Machine Learning. A Practical Approach on the Sta-
tistical Learning Theory. Springer, Heidelberg, 2018.

97

BIBLIOGRAPHY

[11] W. Drexler and J. Fujimoto. Optical Coherence Tomography: Technology and Applica-
tions. Springer, Heidelberg, 2008.

[12] J. Duker, N. Waheed, and D. Goldman. Handbook of Retinal OCT: Optical Coherence
Tomography. Elsevier Health Sciences, Canada, 2014.

[13] T. Engen-Skaugen, J. Erik Haugen, and O. Tveito. Beyond Biomedicine: A Review of
Alternative Applications and Developments for Optical Coherence Tomography. Ap-
plied Physics B: Lasers and Optics, 88:337–357, 2007.

[14] A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann. In Vivo
Optical Coherence Tomography. American Journal of Ophthalmology, 116(3):113–
114, 1993.

[15] S. Gollapudi. Practical Machine Learning. Packt Publishing, Birmingham, 2016.

[16] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT Press, Cambridge,
2016.

[17] A. Gordon, E. Eban, O. Nachum, B. Chen, H. Wu, T.-J. Yang, and E. Choi. MorphNet:
Fast & Simple Resource-Constrained Structure Learning of Deep Networks. In ArXiv,
volume abs/1711.06798, 2017.

[18] G. Hannesschläger, A. Nemeth, C. Hofer, C. Goetzloff, J. Reussner, K. Wiesauer, and
M. Leitner. Optical Coherence Tomography as a Tool for Non-destructive Quality Con-
trol of Multi-layered Foils. Proceedings of the 6th NDT in progress, 2011.

[19] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Data
Mining, Inference and Prediction. 2nd ed. Springer, New York, 2009.

[20] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition.
2016 IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778,
2016.

[21] B. Heise, S. Schausberger, and D. Stifter. Full Field Optical Coherence Microscopy:
Imaging and Image Processing for Micro-Material Research Applications. IntechOpen,
London, 2013.

[22] S. Hochreiter. The Vanishing Gradient Problem During Learning Recurrent Neural
Nets and Problem Solutions. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 6:107–116, 04 1998.

98

BIBLIOGRAPHY

[23] D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte,
K. Gregory, C. Puliafito, and a. et. Optical Coherence Tomography. Science,
254(5035):1178–1181, 1991.

[24] D. H. Hubel and T. N. Wiesel. Receptive Fields of Single Neurones in the Cat’s Striate
Cortex. The Journal of physiology, 148(3), 1959.

[25] S. Ioffe and C. Szegedy. Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift. In Proceedings of the 32nd International Conference
on Machine Learning, volume 37, pages 448–456, Lille, France, 2015.

[26] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang. On
Large-Batch Training for Deep Learning: Generalization Gap and Sharp . ArXiv,
abs/1609.04836, 2016.

[27] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet Classification with Deep
Convolutional Neural Networks. Neural Information Processing Systems, 25, 2012.

[28] V. Kumar and P. Gupta. Importance of Statistical Measures in Digital Image Processing.
International Journal of Emerging Technology and Advanced Engineering, 2, 08 2012.

[29] C. Lee, D. M. Baughman, and A. Lee. Deep Learning Is Effective for Classifying Nor-
mal versus Age-Related Macular Degeneration Optical Coherence Tomography Images.
Ophthalmology Retina, 1:322 – 327, 2017.

[30] H. Liang, M. G. Cid, R. G. Cucu, G. M. Dobre, A. G. Podoleanu, J. Pedro, and D. Saun-
ders. En-face Optical Coherence Tomography - a Novel Application of Non-invasive
Imaging to Art Conservation. Opt. Express, 13(16):6133–6144, 2005.

[31] G. Louppe. Understanding Random Forests: From Theory to Practice. PhD thesis,
University of Liege, 2014.

[32] D. Markl, G. Hannesschläger, S. Sacher, J. G. Khinast, and M. Leitner. Optical Coher-
ence Tomography for Non-destructive Analysis of Coatings in Pharmaceutical Tablets.
Proceedings of SPIE - The International Society for Optical Engineering, 8792, 2013.

[33] F. A. Medeiros, A. A. Jammal, and A. C. Thompson. From Machine to Machine: An
OCT-trained Deep Learning Algorithm for Objective Quantification of Glaucomatous
Damage in Fundus Photographs. ArXiv, abs/1810.10343, 2018.

[34] T. M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, USA, 1997.

99

BIBLIOGRAPHY

[35] A. Nemeth, G. Hannesschläger, E. Leiss-Holzinger, K. Wiesauer, and M. Leitner. Opti-
cal Coherence Tomography – Applications in Non- Destructive Testing and Evaluation.
In Optical Coherence Tomography, chapter 9. IntechOpen, Rijeka, 2013.

[36] K. O’Shea and R. Nash. An Introduction to Convolutional Neural Networks. ArXiv,
abs/1511.08458, 2015.

[37] L. Perez and J. Wang. The Effectiveness of Data Augmentation in Image Classification
Using Deep Learning. ArXiv, abs/1712.04621, 2017.

[38] J. B. Ramsey, H. J. Newton, and J. L. Harvill. The Elements of Statistics: With Ap-
plications to Economics and the Social Sciences. Duxbury Press, North Scituate, MA,
2002.

[39] P. Rasti, A. Ahmad, S. Samiei, E. Belin, and D. Rousseau. Supervised Image Classi-
fication by Scattering Transform with Application to Weed Detection in Culture Crops
of High Density. Remote Sensing, 11(3), 2019.

[40] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer Vision, 115(3):211–252,
2015.

[41] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry. How Does Batch Normalization Help
Optimization? arXiv preprint arXiv:1805.11604, 2018.

[42] S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning. From Theory
to Algorithms. Cambridge University Press, Cambridge, 2014.

[43] C. E. Shannon. A Mathematical Theory of Communication. The Bell System Technical
Journal, 27(3):379–423, 1948.

[44] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-Scale
Image Recognition. ArXiv, abs/1409.1556, 2015.

[45] M. Sokolova and G. Lapalme. A Systematic Analysis of Performance Measures for
Classification Tasks. Information Processing and Management, 45(4):427–437, 2009.

[46] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A
Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning
Research, 15(1):1929–1958, 2014.

100

BIBLIOGRAPHY

[47] D. Stifter, P. Burgholzer, O. Höglinger, E. Götzinger, and C. Hitzenberger. Polarisation-
sensitive Optical Coherence Tomography for Material Characterisation and Strain-field
Mapping. Applied Physics, 76:947–951, 2003.

[48] E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puli-
afito, and J. G. Fujimoto. In Vivo Retinal Imaging by Optical Coherence Tomography.
Opt. Lett., 18(21):1864–1866, 1993.

[49] K. Wu, C. Garnier, J.-L. Coatrieux, and H. Shu. A Preliminary Study of Moment-based
Texture Analysis for Medical Images. Conference proceedings : Annual International
Conference of the IEEE Engineering in Medicine and Biology Society, 2010:5581–4,
2010.

[50] M. D. Zeiler. Adadelta: An Adaptive Learning Rate Method. ArXiv, abs/1212.5701,
2012.

[51] Mnist Example Code. https://github.com/keras-team/keras/blob/

master/examples/mnist_cnn.py, (last accessed July 09, 2019).

[52] One Simple Trick to Train Keras Model Faster with Batch Normalization. https:

//www.dlology.com/blog/one-simple-trick-to-train-keras-

model-faster-with-batch-normalization, (last accessed July 09, 2019).

[53] Retina Gallery. http://retinagallery.com/displayimage.php?

album=1205&pid=12160#top_display_media, (last accessed July 09, 2019).

[54] The Keras Library. https://keras.io/, (last accessed July 09, 2019).

[55] The Mnist Database. http://yann.lecun.com/exdb/mnist/, (last accessed
July 09, 2019).

[56] In Depth Parameter Tuning for Random Forests. https://medium.com/all-

things-ai/in-depth-parameter-tuning-for-random-forest-

d67bb7e920d, (last accessed July 11, 2019).

[57] In Depth Parameter Tuning for SVC. https://medium.com/all-things-ai/
in-depth-parameter-tuning-for-svc-758215394769, (last accessed
July 11, 2019).

[58] Scikit-learn: Linear Support Vector Classifier. https://scikit-learn.org/

stable/modules/generated/sklearn.svm.LinearSVC.html, (last ac-
cessed July 11, 2019).

101

BIBLIOGRAPHY

[59] Scikit-learn: Random Forest Classifier. https : / / scikit - learn .

org / stable / modules / generated / sklearn . ensemble .

RandomForestClassifier.html/, (last accessed July 11, 2019).

[60] Scikit-learn: Support Vector Classifier. https://scikit-learn.org/

stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.

SVC, (last accessed July 11, 2019).

[61] Wikipedia: Convolutional Neural Network. https://en.wikipedia.org/

wiki/Convolutional_neural_network, (last accessed July 18, 2019).

[62] Google’s MorphNet. https://github.com/google-research/morph-

net, (last accessed July 25, 2019).

[63] Homepage of Recendt. https://www.recendt.at/en/OCT.html, (last ac-
cessed June 27, 2019).

102

