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2 2 Preliminaries

1 Introduction

In the classical case, there is a one-to-one correspondence between partial orderings, i.e. reflexive,
antisymmetric, and transitive relations, and strict orderings, i.e. irreflexive and transitive relations.
The only trivial component that distinguishes these two concepts is equality. From that point of
view, it makes no fundamental difference whether we consider one or the other [20].

Orderings and strict orderings have been studied in the theory of fuzzy relations already as well
[11, 17, 18, 23]. Partial fuzzy orderings in the sense of Zadeh [23], however, have severe short-
comings that were finally resolved by replacing the crisp equality by a fuzzy equivalence relation,
thereby maintaining the well-known classical fact that orderings are obtained from preorderings
by factorization [1, 2, 3, 10, 13]. Strict fuzzy orderings based on such a similarity-based setting,
however, have not yet been considered so far. This paper aims at filling this gap. We introduce
similarity-based strict fuzzy orderings and provide constructions how fuzzy orderings can be trans-
formed into strict fuzzy orderings and vice versa. We will see that, unlike the classical case, the
two concepts remain independent to some extent in the sense that there is no general one-to-one
correspondence. The reason is for that is twofold: (1) the underlying fuzzy equivalence relation
is a much richer structure than the classical equality; (2) the underlying logical operations do not
form a Boolean algebra, thus, we do not have the guarantee that all constructions are reversible.

2 Preliminaries

All (fuzzy) relations considered in this paper are binary (fuzzy) relations on a given non-empty
domainX. For simplicity, we consider the unit interval[0,1] as our domain of truth values in
this paper. Note that most results, with only minor and obvious modifications, also hold for more
general structures [9, 10, 12, 13, 15, 19]. The symbolT denotes a left-continuous t-norm [16].
Correspondingly,T

→
denotes the unique residual implication ofT. Furthermore, we denote the

residual negation ofT with NT(x) = T
→

(x,0). If the residual negationNT of T is a strong negation
(i.e. a continuous, strictly decreasing, and involutive negation), we denote the dual t-conorm (w.r.t.
the residual negationNT) with

ST(x,y) = NT(T(NT(x),NT(y))).

In any case, we assume that the reader is familiar with the basic concepts and properties of trian-
gular norms and related operations [11, 16].

Definition 1. A binary fuzzy relationE is calledfuzzy equivalence relation1 with respect toT, for
brevityT-equivalence, if the following three axioms are fulfilled for allx,y,z∈ X:

1. Reflexivity: E(x,x) = 1

2. Symmetry: E(x,y) = E(y,x)
3. T-transitivity: T(E(x,y),E(y,z))≤ E(x,z)

Definition 2. A binary fuzzy relationL is called fuzzy orderingwith respect toT and aT-
equivalenceE, for brevityT-E-ordering, if it fulfills the following three axioms for allx,y∈ X:

1Note that various diverging names for this class of fuzzy relations appear in literature, like similarity relations,
indistinguishability operators, equality relations, and several more [5, 9, 14, 15, 19, 21, 23]
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1. E-reflexivity: E(x,y)≤ L(x,y)

2. T-E-antisymmetry:
T(L(x,y),L(y,x))≤ E(x,y)

3. T-transitivity: T(L(x,y),L(y,z))≤ L(x,z)

Definition 3. A fuzzy relationR is calledstrongly completeif max(L(x,y),L(y,x)) = 1 for all
x,y∈ X [4, 11, 17].R is calledT-linear if NT(L(x,y))≤ L(y,x) for all x,y∈ X [4, 13].

Note that strong completeness impliesT-linearity, regardless of the choice ofT [4]. If NT is a
strong negation, then a fuzzy relationR is T-linear if and only ifST(R(x,y),R(y,x)) = 1 holds for
all x,y∈ X [4].

3 Strict Fuzzy Orderings

In the crisp case, strict orderings are defined as irreflexive and transitive relations. It is more than
obvious how to translate this definition to a fuzzy setting [11, 18]. In order to take the underlying
fuzzy equivalence relation into account, we add extensionality.

Definition 4. A binary fuzzy relationR is calledstrict fuzzy orderingwith respect toT and
a T-equivalenceE, for brevity strict T -E-ordering, if it fulfills the following axioms for all
x,x′,y,y′,z∈ X:

1. Irreflexivity: R(x,x) = 0

2. T-transitivity: T(R(x,y),R(y,z))≤ R(x,z)

3. E-extensionality:
T(E(x,x′),E(y,y′),R(x,y))≤ R(x′,y′)

Note that, under the assumption ofT-transitivity, irreflexivity impliesT-asymmetry, i.e. that
T(R(x,y),R(y,x)) = 0 for all x,y ∈ X, where the converse holds only ifT does not have zero
divisors. In other words, irreflexivity can be replaced equivalently byT-asymmetry ifT does not
have zero divisors. Furthermore, we can conclude thatT(E(x,y),R(x,y)) = 0 holds for allx,y∈X
and any strictT-E-orderingR.

Example 1. It is a well-known fact that

E(x,y) = max(1−|x−y|,0)

is aTL -equivalence onR [7, 21], withTL (x,y) = max(x+y−1,0) being the Łukasiewicz t-norm.
It is easy to show that

L(x,y) = max(min(1−x+y,1),0)

is a strongly completeTL -E-ordering [2, 3] and that

R(x,y) = max(min(y−x,1),0)

is a strictTL -E-ordering.
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E-extensionality as defined above is nothing else but a straightforward translation of the trivial
crisp assertion

(x = y∧x′ = y′∧x < y)→ x′ < y′.

In case thatE is the classical crisp equality,E-extensionality is trivially fulfilled and we end up
in the more traditional concept of a strict fuzzy ordering [11, 18]. Conversely, given an irreflexive
andT-transitive fuzzy relation, we can make itE-extensional by the following proposition.

Proposition 1. Let R be an irreflexive and T-transitive fuzzy relation. Then the following fuzzy
relation (theextensional interior ofRw.r.t. E) is a strict T -E-ordering:

IntT,E[R](x,y)
= inf

x′,y′∈X
T
→

(T(E(x,x′),E(y,y′)),R(x′,y′))

Note that, as the following example suggests, the extensional interior as used in Proposition 1
does not necessarily give a meaningful non-trivial result.

Example 2. The classical strict linear ordering of real numbers< is, of course, an irreflexive
andT-transitive fuzzy relation (no matter what t-normT we choose). GivenE from Example
1, we obtain IntTL ,E[<] = R (with R from Example 1). Now let us consider the product t-norm
TP(x,y) = x ·y. It is well-known that

E′(x,y) = exp(−|x−y|)

is a TP-equivalence [7]. However, we obtain that IntTP,E′ [<] is the empty relation, i.e., for all
x,y∈ X,

IntTP,E′ [<](x,y) = 0.

4 From Fuzzy Orderings to Strict Fuzzy Orderings and Back

In the crisp case, the mutual definability of strict orderings from partial orderings and vice versa
is a trivial matter: Given a partial ordering≤, the corresponding strict ordering can be defined as

x≤ y∧x 6= y

or equivalently

x≤ y∧y 6≤ x.

Conversely, given a strict ordering<, the relation

x < y∨x = y

is a partial ordering. These two constructions are exactly inverse to each other. The question arises
whether and how these simple constructions can still be preserved in the more general fuzzy case.
The following proposition clarifies the first direction.
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Proposition 2. Consider a T-equivalence E and a T-E-ordering L. Then the following fuzzy
relation is a strict T -E-ordering:

StrT,E[L](x,y) = min(L(x,y),NT(L(y,x)))

If T does not have zero divisors, the equalityStrT,E[L](x,y) = min(L(x,y),NT(E(y,x))) holds ad-
ditionally.

As a first important property, we obtain that a givenT-E-orderingL and the inverse of its
induced strictT-E-ordering are disjoint.

Proposition 3. With the assumptions of Proposition 2, the following equality holds for all x,y∈X:

T(L(x,y),StrT,E[L](y,x)) = 0

The definition of StrT,E[L] is obviously a straightforward translation of the constructionx≤
y∧y 6≤ x (being equivalent tox≤ y∧x 6= y in case thatT does not have zero divisors), but it need
not be the only possibility to translate this construction to the fuzzy case (e.g. one could use the
t-normT instead of the minimum). Therefore, let us try to investigate whether StrT,E[L] has some
specific properties and, consequently, justifications. We could consider all strictT-E-orderings
contained in aT-E-orderingL, but this is not a reasonable assumption. In the crisp case, we would
at least assume the following obvious kind of montonicity:

(x≤ y∧y < z)→ x < z

(x < y∧y≤ z)→ x < z

These properties can be translated into the fuzzy setting in an obvious way.

Definition 5. A fuzzy relationR is calledmonotonicw.r.t. a givenT-E-orderingL if and only if
the following holds for allx,y,z∈ X:

T(L(x,y),R(y,z))≤ R(x,z)
T(R(x,y),L(y,z))≤ R(x,z)

The next theorem shows that StrT,E[L] is the greatest strictT-E-ordering contained in a given
T-E-orderingL that fulfills monotonicity with respect toL.

Theorem 1. Let E be a T-equivalence and let L be a T-E-ordering. ThenStrT,E[L] is the largest
strict T -E-ordering that is monotonic w.r.t. L.

As we are, of course, interested in the most specific information available, i.e. a minimal loss
of information, we conclude that StrT,E[L] is the most appropriate choice how to define a strict
T-E-ordering from a givenT-E-orderingL. Note that this loss of information can still be severe,
as the following example demonstrates.

Example 3. Let us reconsider theTL -equivalenceE(x,y) = max(1− |x− y|,0) and theTL -E-
orderingL(x,y) = max(min(1−x+y,1),0). Then we obtain

StrTL ,E[L](x,y) = max(min(y−x,1),0),
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which is exactlyR from Example 1. Now reconsider theTP-equivalenceE′(x,y) = exp(−|x−y|)
and theTP-E′-orderingL′(x,y) = min(exp(y− x),1). Then we obtain StrTP,E′ [L′](x,y) = 0, i.e.
there is no non-trivial strictTP-E′-ordering contained inL′ that is monotonic w.r.t.L. Obviously,
this is due to the fact thatL(x,y) > 0 for all x,y∈ R while we have

NT(x) =

{
1 if x = 0,

0 otherwise.

In such a case, therefore, we can never obtain a meaningful strict ordering.

Now let us try to clarify the other direction. The following proposition provides the necessary
foundation.

Proposition 4. Consider a T-equivalence E and a strict T -E-ordering R. Then the following fuzzy
relation is a T-E-ordering:

RefT,E[R](x,y) = max(R(x,y),E(x,y))

Again the question arises why exactly this choice is appropriate and how it is justified.

Proposition 5. With the assumptions of Proposition 4, R is monotonic w.r.t.RefT,E[R]. Moreover,
RefT,E[R] is the smallest T -E-ordering extending R.

Now we turn to the question under which conditions the correspondence is one-to-one.

Theorem 2. Consider a T-equivalence E and a T-E-ordering L. Then the inequality

RefT,E[StrT,E[L]](x,y)≤ L(x,y)

holds. The equality
RefT,E[StrT,E[L]](x,y) = L(x,y)

holds if and only if, for each pair x,y∈ X, either T(L(x,y),L(y,x)) = 0 or L(x,y) = E(x,y) holds.

Theorem 3. Consider a T-equivalence E and a strict T -E-ordering R. Then the inequality

R(x,y)≤ StrT,E[RefT,E[R]](x,y)

holds. If T does not have zero divisors, we even have equality, i.e.

R(x,y) = StrT,E[RefT,E[R]](x,y).

5 Linearity

Finally, let us approach the question whether linearity (completeness) is preserved by the transfor-
mations introduced in the previous section. The concepts ofT-linearity and strong completeness
as mentioned in Definition 3 are designed forT-E-orderings and are not meaningful for irreflexive
relations. Hence, the next definition proposes a straightforward generalization of the well-known
property of strict linearity

x 6= y→ (x < y∨y < x). (1)
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Definition 6. A fuzzy relationR is calledstrictly T -E-linear(with E being aT-equivalence) if the
following inequality holds for allx,y∈ X:

NT(E(x,y))≤max(R(x,y),R(y,x))

Based on this definition, it is possible to prove the following two theorems:

Theorem 4. Assume we are given a T-equivalence E and a T-E-ordering L. If L is T -linear and
fulfills min-E-antisymmetry2, thenStrT,E[L] is strictly T -E-linear.

Note that strong completeness is a sufficient condition thatT-linearity and min-E-antisymmetry
are fulfilled simultaneously.

For the case of a t-norm inducing a strong negation we are able to prove the following stronger
results.

Theorem 5. Suppose we are given a T-equivalence E and a T-E-ordering L and furthermore
assume that T induces a strong negation NT . If L is T -linear, then the following two assertions
holds for all x,y∈ X:

ST(StrT,E[L](x,y),StrT,E[L](y,x))≥ NT(E(x,y))
ST(StrT,E[L](x,y),E(x,y),StrT,E[L](y,x)) = 1

The first assertion in Theorem 5 can be understood as a slightly weakened strictT-E-linearity.
The second assertion is an important result which is a straightforward generalization of the well-
known fact that, in the crisp case, the following holds for any linear ordering≤ (with < being the
corresponding strict ordering):

x < y∨x = y∨y < x

Note that this is, of course, an equivalent formulation of (1).

Finally, let us turn to the converse direction.

Theorem 6. Assume we are given a T-equivalence E and a strict T -E-ordering R. Suppose further
that T does not have zero divisors or that T induces a strong negation. If R is strictly T -E-linear,
thenRefT,E[R] is T -linear.

6 Conclusion

We have introduced and justified a new concept of similarity-based strict fuzzy orderings. Mean-
ingful correspondences between fuzzy orderings and strict fuzzy orderings have been established,
but we have not obtained a general one-to-one correspondence. From this point of view, fuzzy
orderings and strict fuzzy orderings are not fully equivalent concepts. Hence, the study of both
concepts remains interesting and irredundant. Although t-norms without zero divisors give rise
to some results that look nice at first glance (see Proposition 2, Theorem 3, and Theorem 6), the
examples suggest that this is a rather restrictive and not very intuitive setting. On the other hand,
the examples as well as results like Theorems 5 and 6 suggest that t-norms inducing strong nega-
tions (in particular, including nilpotent t-norms and the nilpotent minimum) have nice and intuitive
properties in this context. This once more confirms the viewpoint that such t-norms are most ade-
quate choices in fuzzy relations theory, fuzzy preference modeling and related fields [4, 6, 8, 22].

2i.e.L is a fuzzy ordering in the sense of Bělohlávek [1].
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1 Introduction

Kernels are two-placed symmetric real functions that can be reproduced as inner products of points
of an Hilbert space. It is a classical result of linear algebra that a symmetric positive definite matrix
A = (aij) ∈ Rn × Rn has this property as it can be decomposed by virtue of its eigenvectorsφ1,
. . ., φn and its positive eigenvaluesλ1, . . ., λn,

A = (φ1, . . . , φn)T Γ(φ1, . . . , φn) (1)

whereΓ denotes the diagonal matrix consisting of the eigenvalues. Since equation(1) can be
rewritten as

aij = 〈φi, φj〉

with the inner product〈., .〉 defined by

〈(x1, . . . , xn), (y1, . . . , yn)〉 =
n∑

k=1

λkxkyk

symmetric positive definite matrices turn out to be kernels, i.e., in terms of linear algebra, sym-
metric positive definite matrices are Gram matrices composed of inner products.

As an inner product is a geometric notion, Gram matrices and therefore kernel functions as
their generalization on more general index sets (continuum instead of discrete finite set of indices)
often emerge in the context of optimization prodecures motivated by geometric ideas.

Recently, learning methods based on kernels like support vector machines, kernel principal
component analysis, kernel Gram-Schmidt or Bayes point machines have received considerable
advertency (see for example [2, 3, 19, 31]). What makes kernel methods so attractive can be ex-
plained by two aspects: firstly, by virtue of the so-called kernel trick data are mapped implicitely
into a higher dimensional feature space in a way that preserves the geometrical notion of the
inital optimization procedure based on linear models while extending it to non-linear models; sec-
ondly, the representer theorem guarantees that the non-linear optimum can be represented as a
superposition of kernel functions which allows to design tractable optimization algorithms (see
for example [2,10,33,39,40]).

These methods find successful applications to classification, regression, density estimation and
clustering problems in computer vision, data mining and machine learning.

While the historical roots of kernel methods can be traced back to the mid of the last century
[1,26], the study of positive definite functions as kernels of integrals date back to the beginning of
the 19th century [24]. It was Mercer who in [24], 1909, characterized kernels in terms of a positive
defniteness condition as a generalization of the classical result from linear algebra(1).

A positive inner product of normed vectorsx and y can also be looked at as a similarity
measureS for the vectors under consideration. The smaller the angleα between the vectors the
higher the degree of similarity due to the basic formula

S(x, y) = cos(α) =
〈x, y〉
‖x‖ ‖y‖

(2)

While this heuristcally introduced notion of similarity neglects the characteristic law of transitivity
of similarity, fuzzy equivvalence relations provide an axiomatic framework for similarity taking
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also transitivity into account. Ifx andy are similar, andy andz are similar then we expect a
certain degree of similarity betweenx andz, otherwise the similarity assertions would run into
inconsistencies. For(2) by geometric reasoning it becomes evident that

S(x, z) ≥ cos(α + β)

whereS(x, y) = cos(α) andS(y, z) = cos(β), as the resulting angle betweenx andz is bounded
by the sum ofα andβ provided that they do not differ too much, that means the sum of both angles
keeps within90 degrees otherwise the similarity vanishes. It is interesing that this basic example

TCos(cos(α), cos(β)) = max{cos(α + β), 0} (3)

turns out to fulfill the axioms for a triangular norm which in fuzzy logic plays the role of a fuzzy
and operator. It is actually equation (3) that motivates the nomenclatureTCos. It is the main result
of this paper to show that all kernelsk : X × X → [0, 1] have to satisfy theTCos-transitivity

TCos(k(x, y), k(y, z)) ≤ k(x, z) (4)

for all elementsx, y andz. For a servey on triangular norms see, e.g., [20].

This result can also be expressed in terms of inner products which leads to the following
inequality

〈p, q〉〈q, r〉 −
√

1− (〈p, q〉)2
√

1− (〈q, r〉)2 ≤ 〈p, r〉,

or, equivalently, but more compactly transformed into the form of a triangle inequality,

arccos(〈p, r〉) ≤ arccos(〈p, q〉) + arccos(〈q, r〉)

which holds true for any choice of normed elementsp, q andr (‖p‖ = 1, ‖q‖ = 1, ‖r‖ = 1, where
‖.‖ = 〈., .〉) of an arbitrary Hilbert space(H, 〈., .〉). Note that in the Eucledean geometry(1) and
(4) are related by the well known trigonometric formula for sums of angles

cos(α + β) = cos(α) cos(β)− sin(α) sin(β)

By this, the different concepts discussed above, namely kernels (Gram matrices) and positive
definiteness on the one hand and fuzzy equality relations andt-nomrs on the other hand, are shown
to be closely related.

This is a novel view which might be interesting for both concepts. As there is a well de-
velopped theory on kernels, above all characterizations due to Bochner [4], Aronszajn [1] and
Yaglom [42], there opens up new construction methods for equality relations. Vice versa new
kernels can be constucted by virtue of fuzzy set theoretically based concepts.

To start with, in the following sections the main concepts concerning kernels and fuzzy equiv-
alence relations are outlined. As the main result it is demonstrated that all kernels which map
into the unit interval have to beTCos-equivalences. Finally, by means of the minimumt-norm a
sufficient criterion is offered and a new way to construct kernels by engaging fuzzy sets is outlined.
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1.1 Kernels

The termkerneloriginates in integral operator theory which dates back to the beginning of the
last century (see, e.g., [30]). In this context kernels are two-placed functions which define a linear
integral operator, e.g., for a Fredholm equation of the second kind

φ(s)−
∫ b

a
k(s, t)φ(t) = f(s)

wherea ≤ s ≤ b, k is continuous on the square[a, b] × [a, b] andf is continuous on[a, b].
Equation (1.1) reduces to a system ofn linear algebraic equations inm unknowns if the kernelk
has the special form

k(s, t) =
m∑

j=1

τj(s)ρj(t) (5)

This is the reason why kernels of the form (5) and, in particular,

k(s, t) =
m∑

j=1

τj(s)τj(t) (6)

play such an important role in the framework of integral equations. Functions of the form (6) are
closely related to positive definiteness.

Definition 1. Let X be a non-empty set. A real-valued functionk : X × X → R is said to
be a positive definite kernel (short kernel) iff it is symmetric, that is,k(x, y) = k(y, x) for all
x, y ∈ X , and positive definite, that is,

∑n
i,j=1 cicjk(xi, xj) ≥ 0 for anyn ∈ N and choice of

x1, . . . , xn ∈ X and any choice of real numbersc1, . . . , cn ∈ R .

Remark 2. In contrary to linear algebra this definition of positive definiteness is common in the
approximation and machine learning literature (compare [2,41]).

Obviously functions of the form (6) are symmetric, they are also positive definite since

n∑
i,j=1

cicjk(si, sj) =
m∑

l=1

n∑
i,j=1

cicjτl(si)τl(sj)

=
m∑

l=1

(
n∑

i=1

ciτl(si)

)2

≥ 0

and, therefore, they are kernels in the sense of definition (1).

Actually, the property (6) and its formulation in terms of inner products is characteristic for
kernels according to a classical result from functional analysis due to Aronszajn [1].

Theorem 3. For any kernelk : X × X → R, there exists a Hilbert spaceH and a mapping
Φ : X → H such that

k(x, y) = 〈Φ(x),Φ(y)〉, (7)

for anyx, y ∈ X , where〈., .〉 denotes the inner product in the Hilbert space.
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Because of its relevance for kernel methods the property (7) in literature is sometimes chosen
to be the starting point for the definition of a kernel (compare, e.g., [10]).

Theorem (3) does not tell how to construct the Hilbert spaceH (feature space) and the mapping
Φ. Actually,H is not even uniquely determined.

One way to obtainH is to start withH ⊂ RX := {f : X → R}, a set of real-valued functions
on X , and apply the Riesz representation theorem (cf, e.g., [32]), by which a bounded linear
functionalF : H → R, that is there is an upper boundM > 0 such that

∀f ∈ H : F [f ] ≤ M‖f‖H,

is uniquely represented by
F [f ] = 〈a, f〉H (8)

for an elementa ∈ H and where〈., .〉H and‖.‖H denotes the inner product ofH and the norm
induced by it, respectively.

If all evaluation functionalsδx : H → R, x ∈ X , given by

δx[f ] = f(x)

are postulated to be bounded, then due to Riesz representation theorem (8), to each elementx ∈ X
there is an elementKx ∈ H such that

f(x) = δx[f ] = 〈Kx, f〉H.

Particularly, forf = Ky we obtain

K(x, y) := Kx(y) = 〈Kx,Ky〉H (9)

This shows that each Hilbert spaceH ⊂ RX , for which all evaluation functionals are bounded,
induce a positive kernelK with feature mapΦ(x) = K(x, .). Such Hilbert sapces are called
reproducing kernel Hilbert sapce(RKHSfor short) due to equation (9). Vice versa it can be shown
that a positive kernelK induces uniquely a RKHS which is generated byK (see, e.g., [1,2]).

While the feature spaceRKHS is a function space, Mercer’s theorem demonstrates the con-
struction of a feature space made up of sequences, that is`2, the set of square summable sequences
(see [24]).

Theorem 4. Supposek ∈ L∞(X 2) is a symmetric real-valued function such that for allf ∈
L2(X ) and any finite measureµ onX , we have∫

X 2

k(x, y)f(x)f(y)dµ(x)dµ(y) ≥ 0. (10)

LetΨj ∈ L2(X ) be the normalized orthogonal eigenfunctions of the integral operatorTk,µ given
by

Tk,µ : L2(X ) → L2(X )(Tk,µ)(x) :=
∫
X

k(x, y)f(y)dµ(y) (11)

associated with the eigenvaluesλj > 0, sorted in non-decreasing order. Then

(λj)j ∈ `2,

k(x, y) =
∑N

j=1 λjΨj(x)Ψj(y) holds for allmost all(x, y) ∈ X 2. N ∈ N, or N = ∞; in
the latter case, the series converges absolutely and uniformly for allmost all(x, y) ∈ X 2.
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1.2 Properties and Classes of Kernels

In this section some basic properties of kernels are summarized which can be found in [8] or [2].

Proposition 5. (Cauchy Schwartz Inequality) Any kernelk : X × X → R satisfies

|k(x, y)|2 ≤ k(x, x)k(y, y) (12)

for any choice ofx, y ∈ X

Proof. From the positive definiteness assumption it follows that the2× 2 matrix(
k(x, x) k(x, y)
k(y, x) k(y, y)

)
is a positive semi-deifinite matrix and implies a non-negative determinant. Therefore,k(x, x)k(y, y)−
k(x, y)k(x, y) ≥ 0 �

Kernels also have pleasant algebraic properties, so they form a cone and, even, the product of
two kernels is again a kernel.

Proposition 6. (Cone of Kernels) If k1 andk2 are kernels on the same domain, then

k(x, y) = λ1k1(x, y) + λ2k2(x, y) (13)

is again a kernel, whereλi ≥ 0, i ∈ {1, 2}.

Proof. The proof follows immediately from the definition (1) �

The next proposition is also an immediate consequence of the definition (1).

Proposition 7. (Renaming Arguments) Let σ : X → X be a bijecttion and letk : X × X → R
is a kernel iffk̃ : X × X → R, given bỹk(x, y) = k(σ(x), σ(y)) is a kernel.

Proposition 8. (Product of Kernels) If k1 andk2 are kernels on the same domain, then

k(x, y) = k1(x, y)k2(x, y) (14)

is again a kernel

Proof. We have to show that for anyn ∈ N and any choice of realsc1, . . . , cn there holds

n∑
i,j=1

cicjk1(xi, xj)k2(xi, xj) ≥ 0. (15)

Consider the matricesK1 = (k1(xi, xj))i,j andK2 = (k2(xi, xj))i,j . Due to the basic char-
acterization from linear algebra of positive semi definite matrices in terms of eigenvalues and
eigenvectors it follws that there are matricesS1 = (s1

i,j)i,j , S2 = (s2
i,j)i,j composed of eigen-

vectors ofK1 andK2 and diagonal matricesΓ1, Γ2 made up by their non negative eigenvalues
λ1

1, . . . , λ
1
n andλ2

1, . . . , λ
2
n of K1 andK2, respectively, such that

K1 = ST
1 Γ1S1,K2 = ST

2 Γ2S2.
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This leads to

n∑
i,j=1

cicjk1(xi, xj)k2(xi, xj) =
∑
i,j

cicj

∑
k

s1
i,kλ

1
ks

1
k,j

∑
l

s2
i,lλ

2
l s

2
l,j

=
∑
k,l

λ1
kλ

2
l

(∑
i

s1
i,ks

2
i,l

)2

≥ 0.

�

Generalizing (6) and (8) a theorem due to [8] yields

Theorem 9. (Closeness Properties of Kernels) Let f : Rn → R, n ∈ N thenk : X × X → R
given by

k(x, y) := f(k1(x, y), . . . , kn(x, y))

is a kernel for any choice of kernelsk1, . . . , kn onX × X iff

f(x1, . . . , xn) =
∑

k1≥0,...kn≥0

ck1,...,knxk1
1 · · ·xkn

n

whereck1,...,kn ≥ 0 for all nonnegative indecesk1, . . . , kn.

Translation invariant kernels, i.e., kernelsk with k(x, y) = k(x − y) for all x, y ∈ X , can be
characterized by their spectral representation due to Bochner, [4].

Theorem 10. (Bochner’s characterization) Let k : Rn → R. Thenk is a translation invariant
kernel iff it can be represented by

k(x− y) =
∫

Rn

cos(ωT (x− y))µ(dω) (16)

whereµ is a positive finite measure.

Note that Bochner’s representation (16) is the Fourier transform of a real function. For

µ(A) = (
σ

2
)(d/2)

∫
A

exp
(
−ωT ω

(σ

2

)2
)

dω

equation (16) yields the widely usedGaussiankernel

k(x, y) = exp
(
−‖x− y‖2

σ2

)
For further details and further classes see [2,9,12].
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1.3 Triangular norms and T -equalities

Triangular norms have been originally studied within the framework of probabilistic metric spaces
(cf. [34, 35]. In this contextt-norms proved to be an appropriate concept when dealing with
triangle inequalities. Later on,t-norms and their dual versiont-conorms have been used to model
conjunction and disjunction for many-valued logic (cf. ( [11,13,14,20]).

Definition 11. A functionT : [0, 1]2 → [0, 1] is calledt-norm(triangular norm), if it satisfies the
following conditions:

(i) ∀x, y ∈ [0, 1] : T (x, y) = T (y, x) (commutativity)
(ii) ∀x, y, z ∈ [0, 1] : T (x, T (y, z)) = T (T (x, y), z) (associativity)
(iii) ∀x, y, z ∈ [0, 1] : y ≤ z =⇒ T (x, y) ≤ T (x, z) (monotonicity)
(iv) ∀x, y ∈ [0, 1] : T (x, 1) = x ∧ T (1, y) = y (boundary condition)

A t-norm is called Archemedian if it is continuous and satisfies

x ∈ (0, 1) =⇒ T (x, x) < x.

Archmediant-norms are characterized by the following representation theorem due to [23]

Theorem 12. Let T : [0, 1] × [0, 1] → [0, 1] be a t-norm. Then,T is Archemedian iff there
is a continuous, strictly decreasing functionf : [0, 1] → [0,∞] with f(1) = 0 such that for
x, y ∈ [0, 1]

T (x, y) = f−1(min(f(x) + f(y), f(0)))

By settingg(x) = exp (−f(x)) Ling’s characterization yields an alternative representation
with a multiplicative generator function

T (x, y) = g−1(max(g(x) g(y), g(0)))

For g(x) = x we get the product,TP (x, y) = x y. f(x) = 1 − x yields the so-called
Łukasiewczt-normTL(x, y) = min(x + y − 1, 0). Archemediant-norms are either isomorphic
to TP or TL. In the former case the Archemediant-norm is calledstrict in the latternon-strict.

1.3.1 Φ-Operators

t-norms are also employed to construct extensions of the Boolean implication by means of the
concept of aΦ-operator, which was introduced by Pedrycz [27], see also [13].

Given at-norm T the functionΦ : [0, 1]2 → [0, 1] is called aΦ-operator with respect toT if it
satisfies

[Φ1] Φ is monotone increasing in the secong component
[Φ2] T (a,Φ(a, b)) ≤ b
[Φ3] b ≤ Φ(a, T (a, b))

While [Φ2] can be interpreted as a many-valued version of the law ofmodus ponensfrom Aris-
totelean logics, [Φ3] can be motivated by the classical tautologyb → (a → a∧ b), which provides
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an interchanging rule fora andb and [Φ1] by the tautology(b → c) → ((a → b) → (a → c)). It
can be shown that a continuoust-normT uniquely determines aΦ-operatorΦT by

ΦT (a, b) = sup{c ∈ [0, 1]|T (a, c) ≤ b} (17)

It is interesting that among continuoust-norms non-strict Archemediant-norms characterize con-
tinuousΦ-operators (see [25]).

Theorem 13. For a continuoust-norm T the Φ-operatorΦT is continuous iffT is non-strict
Archemedian.

If f is an additive generator of the non-strict Archemediant-norm, that isf(0) < ∞, then

ΦT (a, b) = f−1(max(f(b)− f(a), 0)). (18)

Table (1) lists examples oft-norms with their inducedΦ-operators. For further examples see,
e.g., [20].

definition oft-norm inducedΦ-operator

TD(a, b) =

{
min(a, b) if max(a, b) = 1,

0 else
ΦD(a, b) =

{
b if a = 1, b < 1,

1 else

TP (a, b) = a b ΦP (a, b) =

{
b
a if a > b,

1 else
TL(a, b) = min(a + b− 1, 1) ΦL(a, b) = min(b− a + 1, 1)

TM (a, b) = min(a, b) ΦM (a, b) =

{
b if a > b,

1 else

Table 1: Examples oft-norms and inducedΦ-operators

Utilizing the concept of at-normT -equalities extend the two-valued concept of an equivalence
relation to a many-valued version.

1.3.2 T -equivalences

If we want to classify based on a notion of similarity or indistinguishability we face the problem
of transitivity. For instance, let us consider two real numbers to be indistinguishable if and only
if they differ at most a certain boundε > 0, that is modeled by the relation∼ε given byx ∼ε y
:⇔ |x − y| < ε, ε > 0, x, y ∈ R. Note that the relation∼ε is not transitive and, therefore, not
an equivalence relation. The transitivity requirement turns out to be to strong for this example.
The problem of identification and transitivity in the context of similarity of physical objects was
early pointed out and discussed philosophically by Poincaré ( [28], [29]). In the framework of
fuzzy logic the way to overcome this problem is to model similarity by fuzzy relations based on a
many-valued concept of transitivity (see also [5], [6], [15], [16], [20], [43]).

Definition 14. A functionE : X2 −→ [0, 1] is called anindistinguishability relation, or synony-
mously,T -equivalencewith respect to thet-normT if it satisfies the following conditions:

(i) ∀x ∈ X : E(x, x) = 1 (reflexivity)
(ii) ∀x, y ∈ X : E(x, y) = E(y, x) (symmetry)
(iii) ∀x, y, z ∈ X : T (E(x, y), E(y, z)) ≤ E(x, z) (T-transitivity)
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The valueE(x, y) can be also looked at as the (quasi) truth value of the statement “x is equal
to y”. Following this semantics theT-transitivity can be seen as a many-valued model of the
proposition “If x is equal toy and y is equal toz, thenx is equal toz”. T -equivalences for
Archemediant-norms are closely related to metrics and pseudo metrics as shown by

Theorem 15. LetT be an Archimedian t-norm given by

∀a, b ∈ [0, 1] : T (a, b) = f−1(min(f(a) + f(b), f(0))),

wheref : [0, 1] → [0,∞] is a strictly decreasing, continous function withf(1) = 0.
(i) If d : X2 → [0,∞[ is a pseudo metric, then the functionEd : X2 → [0, 1] defined by

Ed(x, y) = f−1(min(d(x, y), f(0)))

is an equaltiy relation with respect toT .
(ii) If E : X2 → [0, 1] is an equality relation with respect toT , then the functiondE : X2 →
[0,∞] defined by

dE(x, y) = f(E(x, y))

is a pseudo metric.

Proof. For a proof of this theorem, see [20,25]. �

Another way to constructT -equivalences is to employΦ-operators.

Theorem 16. LetT be a continuoust-norm,ΦT its inducedΦ-operator,µi : X → [0, 1], i ∈ I, I
non-empty, thenE : X × X → [0, 1] given by

E(x, y) = inf
i∈I

(min (ΦT (µi(x), µi(y)),ΦT (µi(y), µi(x)))) (19)

is aT -equivalence relation.

The proof can be found in [21,22,37]. For further details on indistinguishability realtions see
also [7,17,18,36,38].

2 Kernels areT -equivalencies

Let us start with the analysis of3-dimensional matrices.

Lemma 17. LetM = (mij)ij ∈ [0, 1]3×3 be a3× 3 symmetric matrix withmii = 1, i = 1, 2, 3,
thenM is positive semi-definite iff for alli, j, k ∈ {1, 2, 3} there holds

mijmjk −
√

1−m2
ij

√
1−m2

jk ≤ mik (20)

Proof. For simplicity, leta = m1,2, b = m1,3 andc = m2,3. Then the determinant ofM ,
Det(M), is a function of the variblesa, b, c given by

D(a, b, c) = 1 + 2abc− a2 − b2 − c2. (21)
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For any choice ofa, b the quadratic equationD(a, b, c) = 0 can be solved forc yielding two
solutionsc1 = c1(a, b) andc2 = c2(a, b) as functions ofa andb,

c1(a, b) = ab−
√

1− a2
√

1− b2

c2(a, b) = ab +
√

1− a2
√

1− b2.

Obviously, for all|a| ≤ 1 and |b| ≤ 1 the valuesc1(a, b) andc2(a, b) are real. By substituting
a = cos α andb = cos(β) with α, β ∈ [0, π

2 ] it becomes readily clear that

c1(a, b) = c1(cos(α), cos(β))
= cos(α) cos(β)− sin(α) sin(β)
= cos(α + β) ∈ [−1, 1]

and, analogously,

c2(a, b) = c2(cos(α), cos(β))
= cos(α) cos(β) + sin(α) sin(β)
= cos(α− β) ∈ [−1, 1]

As for all a, b ∈ [−1, 1] the determinant functionDa,b(c) := D(a, b, c) is quadratic inc with
negative coefficient forc2 there is a uniquely determined maximum atc0(a, b) = ab. Note that for
all a, b ∈ [−1, 1] we have

c1(a, b) ≤ c0(a, b) ≤ c2(a, b) (22)

and
D(a, b, c0(a, b)) = 1 + 2ab(ab)− a2 − b2 − (ab)2 = (1− a2)(1− b2) ≥ 0. (23)

Therefore,D(a, b, c) ≥ 0 if and only if c ∈ [c1(a, b), c2(a, b)]. Recall that by renaming the
indeces, the determinant does not change ( a simple elementary interchanging operationσ(k) = l
andσ(l) = k, k 6= l, can be performed by a matrix multiplicationM [σ(k, l)] = T T

σ(k,l)MTσk,l

whereT = (ti,j)i,j is identical to the identityti,j = 1 for i = j and ti,j = 0 else except
for the indecesk, l wheretk,k = t(l, l) = 0 and t(k, l) = t(l, k) = 1. As Det(Tσ(k,l)) ∈
{−1, 1} it follows that Det(M̃) = Det(T T

σ(k,l))Det(M)Det(Tσk,l
) = Det(M). An arbitrary

permutationσ can be splitted in a sequence of elementary interchaning operations proving the
assertion.) Therefore, without loss of generality we may assume that

a ≥ b ≥ c. (24)

For convenience, letQ = {(x, y, z) ∈ [0, 1]3|x ≥ y ≥ z}. Then, obviously, for any choice of
a, b ∈ [0, 1] there holds(a, b, c1(a, b)) ∈ Q. Elementary algebra shows that(a, b, c2(a, b)) ∈ Q
is only the case fora = b = 1. As for a = b = 1 the two solutionsc1, c2 coincide,c1(1, 1) =
c2(1, 1) = 1 it follows that for any choice of(a, b, c) ∈ Q there holdsDet(M) ≥ 0 if and only if

c1(a, b) = ab−
√

1− a2
√

1− b2 ≤ c. (25)

If (a, b, c) 6∈ Q then the inequality (25) is trivially satisfied which together with (25) proves the
lemma �
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Proposition 18. T (a, b) = max(ab −
√

1− a2
√

1− b2, 0) is a non-strict Archemediant-norm
with additive generatorf(x) = arccos(x).

Proof. Let a = cos(α) andb = cos(β) with α, β ∈ [0, π/2], then

f−1(min(f(a) + f(b), f(0))) =
cos(min(arccos(cos(α)) + arccos(cos(β)), arccos(0))) =

cos(min(α + β, π/2)) =
max(cos(α + β), 0) =

max(cos(α) cos(β)− sin(α) sin(β)) =

max(ab−
√

1− a2
√

1− b2)

which proves thatarccos is the additive generator �

The graph ofTCos is depicted in figure (1).

Figure 1: Graph ofTCos

Corollary 19. Let TCos be thet-norm defined in (18) and letk : X × X → R be a kernel, then
for any choice of elementsx, y, z ∈ X there holds

TCos(k(x, y), k(y, z)) ≤ k(x, z). (26)

Moreover,TCos is the greatestt-norm with this property.

Proof. This, immediately follows from the definition (1) and the lemma (17). �

Remark. For dimensions≥ 4 the inequalities (26) are no longer sufficient tp guarantee posi-
tive definiteness. Consider, for example,

A =


1 0 1/2 3/5
0 1 3/5 1/2

1/2 3/5 1 0
3/5 1/2 0 1

 (27)
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Though for all indecesi, j, k ∈ 1, . . . , 4 the coefficients ofA = (aij)ij of example (27) satisfy the
conditions (26), the matrixA is not positive semi-definite, as it has a negative eigenvalue.

As a kernel can be represented by an inner product of some Hilbert space, corollary (20)
yields an interesting inequality for inner products. Note, that for dimension2 in (12) by analysing
the determinant we got the well-known and fundamental Cauchy-Schartz inequality. Now, the
analysis of the determinant of3-dimensional matrices leads to the inequalities (28).

Corollary 20. LetT thet-norm defined in (18), letH be a Hilbert space endowed with the inner
product〈., .〉, then for any choice of elementsx, y, z ∈ H with ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖z‖ ≤ 1 there
holds

〈x, y〉〈y, z〉 −
√

1− 〈x, y〉2
√

1− 〈y, z〉2 ≤ 〈x, z〉, (28)

or, equivalently,
arccos(〈x, z〉) ≤ arccos(〈x, y〉) + arccos(〈y, z〉) (29)

Proof. The proof directly follows from (22), (22), (22) and (23) and the trigonometric identity
cos(α) cos(β)− sin(α) sin(β) = cos(α + β). �

Inequality (29) can be looked at as a triangle inequality for inner products.

2.1 Constructing kernels byTM

The following lemma and proposition can also be found as an exercise in [2].

Lemma 21. Let ∼ be an equivalence relation onX and letk : X × X → {0, 1} induced by∼
via k(x, y) = 1 if and only ifx ∼ y. Thenk is a kernel.

Proof. By definition of positive definiteness, let us consider an arbritrary sequence of ele-
mentsx1, . . . , xn. Then there are at mostn equivalence classesQ1, . . . , Qm on the set of indeces
{1, . . . , n}, m ≤ n, where

⋃
i=1,...,m Qi = {1, . . . , n} andQi ∩ Qj = ∅ for i 6= j. Note that

k(xi, xj) = 0 if the indecesi, j belong to different equivalence classes. Then, for any choice of
realsc1, . . . , cn, we obtain

∑
i,j

cicjk(xi, xj) =
m∑

p=1

∑
i,j∈Qp

cicjk(xi, xj)

=
m∑

p=1

∑
i,j∈Qp

cicj · 1

=
m∑

p=1

∑
i∈Qp

ci

2

≥ 0

�

Proposition 22. k : X × X → {0, 1} is a kernel iff it is induced by an equivalence relation.
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Proof. It only remains to be shown that ifk is a kernel then it is the indicator function of an
equivalence relation, that is, it is induced by an equivalence relation. Ifk is a kernel, according to
(26) for allx, y, z ∈ X it has to satisfyTCos(k(x, y), k(y, z)) ≤ k(x, z) which implies,

k(x, y) = 1, k(y, z) = 1 =⇒ k(x, z) = 1. (30)

Obviously,k(x, x) = 1 andk(x, y) = k(y, x) due to the reflexitivity and symmetry of an equiva-
lence relation, respectively. �

Lemma (21) can be extended to the[0, 1] intervall by employing theTM tnorm.

Corollary 23. TM -equivalences are kernels.

Proof. Letk : X×X → [0, 1] with k(x, x) = 1, k(x, y) = k(y, x) andmin(k(x, y), k(y, z)) ≤
k(x, z) for anyx, y, z ∈ X . We have to show that for any choice of finite subsetQ = {x1, . . . , xn} ⊆
X it follows that for allc1, . . . , cn there holds∑

i,j:xi,xj∈Q

cicjk(xi, xj) ≥ 0.

Consider the finte set{k(xi, xj) ∈ [0, 1]|xi, xj ∈ Q} = {α1, α2, . . . , αm} with m ≤ n. Without
loss of generality we may assumeαp < αq for p < q. Further we setα0 = 0. Then, for any choice
elementsx, y ∈ Q we obtain the representation

k(x, y) =
m∑

p=1

(αp − αp−1)1{(a,b)|k(a,b)≥αp−1}(x, y)

Because, ifk(x, y) = αq, x, y ∈ Q, then

k(x, y) =
m∑

p=1

(αp − αp−1)1{(a,b)|k(a,b)≥αp−1}(x, y)

=
q∑

p=1

(αp − αp−1)

= αq.

Observe that1{(a,b)|k(a,b)≥α}(., .) is the indicator function of an equivalence relation because of

α ≤ min(k(x, y), k(y, z)) ≤ k(x, z)

which demonstrates the transitivity. By this,k turns out to be the superposition of kernels with
positive coefficients. From this, together with lemma (21) and the cone property of kernels, see
(6), we conclude thatk has to be a kernel. �

By means of (19)TM -equivalences can be constructed starting from an arbitrary set of fuzzy
sets. Letµi : X− > [0, 1], i ∈ I, be a family of fuzzy sets, then

E(x, y) = inf
i∈I

(min (ΦM (max(µi(x), µi(y)),min(ΦM (µi(y), µi(x)))))
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generates aTM -equivalence and, therefore, an kernel. Ifµi are indicator functions withµi(x) =
µj(x) = 1 only if i = j, then the resultingTM -equivalence is actually the indicator function
of an equivalence relation induced by the fuzzy setsµi. For applications in machine learning by
means of the fuzzy setsµi a priori knowledge or knowledge obtained by other methods, as for
instance statistically derived informations about the samples, can be incorporated to construct the
kernel. The kernel constructed in this way somehow represents thec̈lusterïnformation of theµs in
a compact manner.

2.2 Conclusion

This paper is intended to be a starting point for further research exploring the interrelations be-
tween kernel based learning methods and the theory ofT -equivalences. So, the close inter-
relationship between the concepts of kernels from machine learning andT -equivalences from
fuzzy set theory was pointed out. This was mainly substantiated by two results. Firstly, kernels
k : X ×X → [0, 1] areTCos-equivalences, whereTCos is the non-strict Archemediant-norm with
additive generatorf(x) = arccos(x). Secondly, a sufficient criterion is provided by the result that
TM -equivalences are kernels, whereTM denotes the minimumt-norm. Further, it was outlined
how fuzzy sets can be incorporated to construct kernels.
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1 Introduction

A new approach for �nding nonlinear approximation formulas for very high-
dimensional data is presented. The method is based on linear regression, but
instead of the original variables we use nonlinear terms with these variables.
Such a formula is still linear in the parameters, so least squares can be applied
to �nd the globally optimal parameters. We use an accelerated version of ge-
netic programming to �nd the optimal nonlinear terms, and we use variable
selection methods to select those terms leading to an approximation formula
which shows an optimal balance of accuracy and simplicity. In general, evolu-
tionary methods like genetic programming tend to produce many individuals
with low �tness. To save computation time, an early stopping strategy in case
of low �tness is used.

2 The new algorithm

2.1 The core of the new algorithm

In the following, the original independent is called y. At the beginning, the
actual independent is the original independent yactual = y . Later yactual will
be modi�ed. The constant term c = (1; : : : ; 1)T is always the �rst variable
that is chosen. But this variable is not counted as real variable. The algorithm
performs the following steps:

1. An accelerated version of genetic programming (including a population of
individuals and a crossover operator) is used to generate millions of very
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simple formulas. We select that formula xA which is best correlated with
the actual independent yactual. We look only at the absolute value of the
correlation coe�cient.

2. Then we modify yactual such that all the parts of y that can be approxi-
mated with the regressors already chosen are subtracted, setting yactual to
y � ŷ(c; xA). Here ŷ(c; xA) is the linear best approximation of y with the
use of the regressors c and xA. We can say, yactual is y made orthogonal
to the regressors already chosen.

3. Once again the accelerated version of genetic programming is used to
generate millions of very simple formulas. And now we select that formula
xB which is correlated strongest with the actual independent yactual. We
look only at absolute values again.

4. Then once again, yactual is made orthogonal to the regressors already
chosen, so we set yactual to y � ŷ(c; xA; xB).

5. Continue in this manner, until a given number of regressor terms is se-
lected or some other termination criterion is ful�lled.

2.2 The accelerated version of genetic programming - an overview

Interrupting the calculation of the �tness as early as possible, when it can
be seen that the checked individual is not worth spending additional time,
accelerates the algorithm. So we need an algorithm which calculates the �tness
of only the better individuals exactly and estimates the �tness of all the other
individuals.

In the following lines the major steps of the accelerated genetic program-
ming algorithm are described.

1. Generate an initial population with nlarge individuals.
2. Evaluate each individual for n1 points of the training data set and estimate

the correlation coe�cient with the actual dependent by using only these
n1 points.

3. Determine the nsmall best correlated individuals out of nlarge, based on
the estimated correlation coe�cient. We look only at the absolute value
of the correlation coe�cient.

4. For these nsmall chosen individuals the exact value of the �tness function
(i.e. the absolute value of the correlation coe�cient) using all the points
of the training data set has to be calculated.

5. Produce a new generation of nlarge out of the nsmall chosen individuals:
� Repeat the following, until we have enough new individuals. Choose

randomly two of the nsmall individuals and compare their �tness. The
better one is called the winner, and the other one is called the loser. Let
the winner produce two o�springs, one is an exact copy of the winner,
and the other o�spring is made via crossover (as crossover partner, one
of the nsmall individuals is chosen, which is neither the winner nor the
loser).
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� The individual which is the best so far is always copied into the next
generation ('elitism').

� A small part of the new generation is produced in the same way as the
initial population. This is one way of avoiding the problem with local
optima. A mutation is not needed any more.

6. Go to step 2, until a termination criterion is ful�lled.

The runpar-list: The de�nition of a few important parameters

Now a parameter list is introduced, which can be used to control the
global behavior of the algorithm.

AlgoVariant: This is the central parameter.
If AlgoV ariant is 1, then no acceleration is used and no genetic
programming. The terms are generated randomly, and the term
with the best �tness is chosen. The algorithm stops if GPTimeMax
seconds are elapsed. If AlgoV ariant is 2, then the accelerated version
of AlgoVariant 1 is used. So terms are generated randomly, and the
�tness is estimated by using only n1 points and if the individuum
is near the best so far, then the �tness is calculated exactly. The
accelerated variant performs better than the not accelerated variant.
Only if a data set is very short, for example 50 or less data points,
then the not accelerated variant may be useful.
If AlgoV ariant is 3, then the new variant which is described here is
used, which uses the accelerated version of genetic programming (see
2.2) including a population and a crossover operator.

GPTimeMax: This parameter is only used if AlgoV ariant is 1 or 2.
In these variants, we try to �nd the best correlated term, and we
stop this procedure, when GPTimeMax seconds are elapsed. Then
the next term is searched, and again until GPTimeMax seconds are
elapsed. And so on. The approximation formula that we �nally want
is a combination of these terms.

n1: The parameter n1 tells the algorithm, how many points are
used to get a quick estimation of the correlation coe�cient. For
AlgoV ariant = 2 Monte Carlo experiments have been performed
with n1 = 20, n1 = 30 and n1 = 50 and we have seen, that n1 = 50
leads to the best results.

popsize: Determines, how many individuals are in one generation of the
genetic programming algorithm. Only used, if AlgoV ariant is 3. In
section 2.2 the expression nlarge can be found. This parameter nlarge
is exactly corresponding to the parameter popsize here. One of our
standard settings is a popsize of 5000. The larger popsize, the more
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computation time is needed.

popsizeDivisor: Only used, if AlgoV ariant is 3. In section 2.2 the expres-
sion nsmall can be found. The parameter popsizeDivisor is used to
de�ne the parameter nsmall.

nsmall = popsize=popsizeDivisor

It is assumed, that popsizeDivisor is a divisor of popsize.
Example: If popsize is 5000 and popsizeDivisor is 10, then
nsmall = 500. This is one of our standard settings. A popsizeDivisor
of 5 has also been used quite often.

nGenerations: In section 2.2 the phrase 'until a termination criterion is
ful�lled' can be found. As termination criterion we simply use that the
actual number of generations reaches the parameter nGenerations.
Quite often nGenerations = 24 or nGenerations = 18 is used.
If a more exact formula shall be reached, then the parameter
nGenerations can be increased, if possible while popsize is also in-
creased. To make further improvements possible, when nGenerations
and popsize are already quite high, the parameter nRuns has been
introduced.

nRuns: The whole algorithm, as described in section 2.2 is repeated
nRuns times and the best overall individual is stored. So if you want
to spend a lot of computation time for �nding one speci�c nonlinear
term, then you can increase popsize, nGenerations and nRuns.
If popsize and nGenerations are already quite high, for example
popsize = 32000 and nGenerations = 100, then increasing popsize
would lead to storage problems. If nGenerations is very high, then
the optimization process is likely to converge to a local optimum. But
the parameter nRuns can be increased without any limits, as long as
enough computation power is available.

NewIndPercentage: In our genetic programming algorithm, when the
individuals for the next generation are constructed, then most of
them are made via copying and crossovering of the parent individuals.
But a certain percentage of the next generation is made with the
same method that is used to generate the initial population. This
percentage is given by the parameter NewIndPercentage. An
example: If popsize is 5000 and NewIndPercentage is 0:25, then
1250 individuals of the 5000 are generated with the same method
that has been used to generate the initial population. The reason for
doing this is that we want to maintain genetic diversity.
This parameter can also be used to make experiments with
NewIndPercentage = 1. Then no crossover at all is performed, and
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all the individuals are only generated like the initial population. If
this would lead to good results, then the crossover operator would be
useless. Our experiments have shown that the crossover operator is
not useless.

numofelems: The parameter numofelems is needed to generate a new
individuum in the initial population. numofelems is used as an
upper bound for the number of elements in the corresponding genetic
programming tree. If numofelems is 4, then formulas up to degree
2 will appear. If numofelems is 6, then formulas up to degree 3
will appear. If numofelems is 8, then formulas up to degree 4 will
appear.

NewIndElemsVaryingFlag: If this ag is one, then the individuals in the
initial population have widely varying sizes. If this ag is zero, then the
size of all the individuals in the initial population is roughly constant.
An example: If numofelems is 16 and NewIndElemsV aryingF lag
is 0, then approximately 70% of the generated individuals have a
size of 15, and approximately 30% have a size of 14. This is the
case, because the individual generator repeatedly makes a small
tree larger by replacing a terminal symbol with a function and the
corresponding terminals. If this is done for a tree with 14 elements,
and we try to replace a terminal by the function + and two random
arguments, then we would get a tree with 16 elements, and this is too
large, by the de�nition of numofelems. So in this case the individual
generation algorithm stops and takes that individual that has a size
of 14.
If numofelems is 16, and NewIndElemsV aryingF lag is 1, then
numofelemsactual is set to a random integer number in the interval
[1; 16], and numofelemsactual is used as an upper bound for the size
of the tree instead of numofelems. So the size of the individuals
that we get is varying. If numofelemsactual is for example 9, then
we expect to get an individual of size 8, but with a probability of
approximately 0.3 we get an individual with size 7.

Crossnumofelems: If a crossover operator is used, then the size of the
o�spring individual can be up to twice the size of the parent indi-
viduals. For this reason a delimiter is needed. We use the parameter
Crossnumofelems to do so. If the size of an individual is too large,
then the crossover is repeated. If the individual is still to large, then
the crossover operator is used again to get a new individual. If the new
individual is again too large, then we stop the crossover process and
instead we copy one of the parent individuals. To calculate the size
of an individual we use the number of elements in the corresponding
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genetic programming tree. So this is done exactly in the same way as
for the parameter numofelems.

2.3 Systematic Experiments to Find Good Parameter Settings

Totally eight data sets have been used to perform our experiments, we call
them 'D1', ... ,'D8'.

� D1: 8748 rows and 14 columns; AVL, simulated engine test bench data;
� D2: 475 rows and 149 columns; DaimlerChrysler, measured engine test

bench data.
� D3: 161 rows and 70 columns; GUASCOR, measured engine test bench

data
� D4: 506 rows and 14 columns; UCI-repository: the HOUSING data set
� D5: 1000 rows and 8 columns, simulated, no noise.
� D6: 1000 rows and 8 columns, simulated, with noise.
� D7: 1000 rows and 50 columns, simulated, no noise.
� D8: 1000 rows and 50 columns, simulated, with noise.

Each of the data sets has been split into two parts. Usually the �rst eighty
percent are used as training data and the other twenty percent are used as
test data1. An approximation formula is determined with using only the train-
ing data, and then the quality of this formula is calculated, as well on the
training data as on the test data. As a quality measure for the training data
we take R2 as usual. As a quality measure for the test data we take the square
of the correlation coe�cient of the measured data and the approximated data.
In our experiments, several nested loops have to be run (so they need a lot of
computation time usually about ten hours):

1. First, eight �les are used, and the experiments have to be performed for
every �le.

2. Then, for each �le an approximation for the �rst eight variables is made.
3. Furthermore to get signi�cant results each experiment has usually been

repeated ten times.
4. In our algorithm at �rst the most important term is determined and a

regression formula is made with this term, and then the next term is added
to the term collection, and once again a regression formula is made, now for
two terms. This process is repeated until DimMax terms are selected. So
the GP-based term �nder algorithm has been called DimMax times. And
for each of the resulting formulas, the quality measure is determined, as
well for the training data as for the test data. The more terms are used,
the higher the quality measure, at least for the training data. For very
complicated approximation formulas, over-�tting problems may arise. So
simpler formulas can have better performance on the test data set.

1 For the housing data set, only �fty percent are used as training data and the
other �fty percent are used as test data.
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The result of one large experiment with all the loops mentioned above is
a huge �le. Typically it contains 8 � 8 � 10 = 640 rows, because we have eight
�les, eight variables and ten repetitions. In the following, such an experiment
producing these 640 rows is called Standard Experiment. And in each row of
such an experiment we �nd the following information:

1. a) The approximation formula based on one nonlinear term
b) The quality of this approximation formula, evaluated on the training

data set
c) The quality of this approximation formula, evaluated on the test data

set
2. a) The approximation formula based on two nonlinear terms

b) The quality of this approximation formula, evaluated on the training
data set

c) The quality of this approximation formula, evaluated on the test data
set

3. And so on, until we have an approximation formula based on DimMax

terms

Usually the value of DimMax is �ve. Making DimMax larger does not only
increase the needed computation time, but also allows more complicated
formulas and thus the risk of over�tting.

To compare two di�erent parameter settings, the following has to be
done:

1. At �rst two large experiments have to be started with the two parameter
settings of interest.

2. Then the two result �les have to be compared, especially the quality mea-
sures.

To make two result �les comparable, usually for each result �le the average
row is determined, as far as the qualities are concerned. If DimMax is for
example �ve, then we have ten averaged qualities for each �le:

1. a) The quality of the one-term-approximation-formula on the training

data.
b) The quality of the one-term-approximation-formula on the test data.

2. a) The quality of the two-term-approximation-formula on the training

data.
b) The quality of the two-term-approximation-formula on the test data.

3. a) The quality of the three-term-approximation-formula on the training

data.
b) The quality of the three-term-approximation-formula on the test data.

4. a) The quality of the four -term-approximation-formula on the training

data.
b) The quality of the four -term-approximation-formula on the test data.
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5. a) The quality of the �ve-term-approximation-formula on the training

data.
b) The quality of the �ve-term-approximation-formula on the test data.

In this section, these qualities are put into one table, a �rst example can be
seen in table 1.

Number of terms 1 2 3 4 5

Quality on training data 0.5558 0.7176 0.7899 0.8011 0.8122
Quality on test data 0.5333 0.6809 0.7501 0.7612 0.7631

Table 1. This is an example quality table. Such tables are used to compare the
results of two experiments

So if the qualities in the quality table of experiment A are better than the
qualities of experiment B, then the parameters of experiment A are supposed
to be better than the parameters of experiment B. In the result �les, usually
the average row has been determined for the �rst experiment and for the
second experiment.
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given learning problemand a given learning algorithm. This method ensures high accuracy and
significantly increases interpretability of the resulting models.

Key words — feature selection, bacterial evolutionary algorithm
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1 Introduction

To create regression models from data several methods like statistical regression, neural networks,
or regression tree methods [BFSO84] exist. The problem, however, arises that the complexity of
these models rapidly increases with the number of features involved. This causes two major prob-
lems: On the one hand, some features may have a very low bias but a high variance and mislead the
regression methods. On the other hand a large number of predictors decreases interpretability, as
the major influences are likely to be shadowed by other unimportant features. Furthermore, taking
measurements is often a time consuming and costly task. Reducing the number of measurements
(features) used is therefore an important design goal.

Dimension reduction or feature selection can be used to reduce the dimensionality of the orig-
inal state space (i.e. to reduce the number of features under investigation). While dimension re-
duction methods like Principal Component Analysis (PCA) [Bis95] use projection methods which
often cumber interpretation of the resulting models, feature selection methods aim to identify the
most relevant features out of the original set of features [GE03,LKM01].

In this paper we will present a novel approach to feature selection using bacterial evolutionary
algorithm [BDK04]. In machine learning the goal is to find a function which models a relation
between the input and the output space. An increase in the dimensionality of the input space
increases the complexity of this learning problem. When features with only minor or no relation
at all to the output space are involved, the resulting functionf might tend to overfit the training
data. Although various methods exist to overcome these problems, it is often more efficient to
reduce the number of features beforehand.

Feature selection can be described as the task of identifying an optimal subset ofm out of
the availablen features. The resulting subset ofm features is then used to compute a function
f̄ , which maps from them-dimensional input spacēX to the output spaceY . We would like to
identify not only the optimal subset of a given size (m) but to find the optimal size of this subset,
too.

2 Bacterial evolutionary algorithm

There are several optimization algorithms which were inspired by the evolutionary processes of
biological organisms. One of the recent evolutionary approaches is referred to as bacterial evo-
lutionary algorithm. This method iteratively combines two operations inspired by the microbial
evolution phenomenon. The bacterial mutation operation optimizes the features of a single bac-
terium, while the gene transfer operation provides the transfer of information between the bacteria
in the population. These processes can be easily applied in optimization problems where one
individual corresponds to one solution of the problem.

2.1 The encoding method

In the algorithm, one bacteriumξi, i ∈ I corresponds to one solution of a given problem. First,
we have to define how a solution is encoded in such a bacterium (chromosome). For the task
of selectingm features from a set ofn features (m ≤ n), the bacterium consists of a vector of
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integersξi = {ξ1
i , . . . , ξm

i }, 1 ≤ ξk
i ≤ n, whereξk

i 6= ξl
i for k 6= l. Because we want to find the

optimalm value too, thus this value is not predefined for the bacteria.

2.2 The evaluation function

Similar to genetic algorithms the fitness of a bacteriumξi is evaluated using anevaluation func-
tion φ(ξi). The choice of this evaluation function is problem dependent. For the task of feature
selection we use the features encoded in bacteriumξi and the training data setS to compute a
regression modelfi according to:

fi(x) : Xξ1
i
× . . .×Xξm

i
7→ Y.

The evaluation function is then computed as the average squared error of the input-recall behavior
of this model on test data setT ⊂ X × Y supplemented by the length of the bacterium:

φ(ξi) =
1
|T |

∑
(x,y)∈T

(
fi(x)− y

)2 + β
l(ξi)

MAXLEN
,

wherel(ξi) means the length of the bacteriumξi, MAXLEN is a predefined value for the maximal
allowed bacterium length andβ is a trade-off parameter between accuracy and complexity.

2.3 The evolutionary process

The basic algorithm consists of three steps [BHK+02,NF99]. First, an initial population has to be
created randomly. Then, bacterial mutation and gene transfer are applied, until a stopping criteria
is fulfilled. The evolution cycle is summarized below:

Bacterial Evolutionary Algorithm

create initial population
do {

apply bacterial mutation
apply gene transfer

} while stopping condition not fulfilled
return best bacterium

2.4 Generating the initial population

First an initial bacterium population ofNind bacteria{ξi, i ∈ I} is created randomly(I =
{1, . . . , Nind}). Figure 1 shows a bacteriumξi with n = 50. The length of the bacterium is
initialized also randomly between 1 andMAXLEN. On figure 1 the length of the bacterium is 5.
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1 Ξi

2 Ξi
3 Ξi

4 Ξi
5

Figure 1: A single bacterium

2.5 Bacterial mutation

Bacterial mutation is applied to all bacteriaξi, i ∈ I. First,Nclones copies (clones) of the bacterium
are created.

ξi,j = ξi, ∀j : 1 ≤ j ≤ Nclones

Then, in each cloneξi,j a random segment of the chromosome is replaced by random numbers
not greater thann (ξk

i,j = Random[n]). When we change a segment of a bacterium, we must take
care that the new segment is unique within the selected bacteriumξk

i 6= ξl
i for k 6= l. Next, all the

clones and the original bacterium are evaluated using the evaluation functionφ(ξ). The bacterium
with the best evaluation result is used to transfer the mutated segment to the other individuals.
This cycle is repeated for the remaining segments, until all segments of the chromosome have been
mutated and tested. At the end, the best bacterium is kept and the remainingNclones are discharged.
The length of the segment is also a parameter of the bacterial mutation (MutationLength). When
we change a segment in some clone, then this segment can be shorter or longer (or remain the
same length) than before. Thus, new numbers can be added or some numbers can be removed
from the bacterium. We also have a parameter on this (ModifiedMutationLength). Figure 2 shows
an example mutation forNclones = 3, MutationLength = 1, ModifiedMutationLength = 0.
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ß
etc.

ß

16 17 20 2 19

Φ HΞL = 0.3

Figure 2: Bacterial mutation
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2.6 Gene transfer

The bacterial mutation operator optimizes the bacteria in the population. Often, however, this is
not enough as we need to provide a possibility for some information flow within the population.
Using the gene transfer operator, the recombination of genetic information between two bacteria
is possible.

1. First, the population must be sorted and divided into two halves according to their evaluation
results. The bacteria with a better score are called superior half, the bacteria with a worse
score inferior half.

2. Then one bacterium is randomly chosen from the superior half and another from the inferior
half. These two bacteria are called the source bacterium, and the destination bacterium,
respectively.

3. A segment from the source bacterium is randomly chosen and this segment is used to over-
write a random segment of the destination bacterium if the source segment is not already in
the destination bacterium, or the source segment can be added to the destination bacterium
without any overwriting.

Gene transfer is repeatedNinf times, whereNinf is the number of “infections” per gen-
eration. As in the bacterial mutation, here we have also two other parameters, the length of
the source segment (GeneTransferLength), and the length of the change in the destination bac-
terium (ModifiedGeneTransferLength). Figure 3 shows an example for the gene transfer operations
(Nind = 4, Ninf = 3, GeneTransferLength = 1, ModifiedGeneTransferLength = 0).
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Figure 3: Gene transfer

2.7 Stopping condition

If a minimum error value is reached by the best bacterium in the population or the maximum
number of generationsNgen is reached then the algorithm ends, otherwise it returns to the bacterial
mutation step.
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3 Simulation results

The algorithm used for many simulations was realized in Mathematica. We applied a high-
dimensional problem to test the power of the algorithm. The test function was defined over a
20-dimensional data space[0, 1]20 according to:

f20(x) = x1x
2
2x

3
13 − x20 + 5 sin(x16) − 25 cos(x5x18) + exp(x3x5) + x4x19 + x2

10 + x5
11.

We created 500 training samples by assigning each input dimension a random number with
equal distribution. The function has random behavior in the remaining dimensions generated
by a random generator. To find an optimal approximation function we used linear, as well as
exponential, quadratic and cubic transformations of the input dimensions. Then we created a
prediction model by computing a least-squares fit to the data as a linear combination of the input
features. This gives us a set of 80 possible input features.

The learning curves for a sample simulation are shown in Figure 4. The parameter setting of
this simulation is the following:

Ngen = 40 MutationLength= 1
Nind = 4 ModifiedMutationLength= 1
Nclones = 6 GeneTransferLength= 1
Ninf = 3 ModifiedGeneTransferLength= 1
MAXLEN= 10 β = 0.2

0 10 20 30 40 50

0.3

0.4

0.5

0.6

0.7

0.8

Figure 4: Simulation result using linear approximation

We can see, that the algorithm converged in all test runs within at most 40 iterations to an
optimal solution. Even within 10 iterations, a good solution was found in all cases. When using
forward selection, only a suboptimal solution with a20% higher average squared error was found.



4 Conclusion and future work 6

4 Conclusion and future work

Bacterial evolutionary algorithm for feature selection was discussed in this paper. We have ex-
tended our previous method to identify not only the optimal subset of a given size, but to find
the optimal size of this subset, too. Additionally, we improved the bacterial operators which can
change not only one element, but a longer segment of the chromosome to avoid local optima.

Future work will concentrate on finding optimal values for the parameters of the algorithm.
Additionally, more in-depth comparisons with other methods using different data sets have to be
carried out.
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ANALYSIS OF SPOT COUNTING ALGORITHMS IN

FLUORESCENCE MICROSCOPY IMAGES

LEILA MURESAN, BETTINA HEISE

Introduction

A frequent task in medical image processing is to identify spots in fluorescence
microscopy images. In the case of micro-arrays, the spots are due to DNA se-
quences labelled with fluorophores (Cy3 or Cy5), one or more per sequence. For
classical microscopes, the high density of fluorophores cannot be well resolved, so
only mean intensities of circular regions are computed. With NanoScoutr, single
peaks (spots) are counted for each region of interest, and the relative abundance
of the sequence (of each specific gene) can be determined even from very small
samples.

From the image processing point of view peaks can be defined as bright, small,
circular features, with little detail at the given resolution. We shall approximate
them with a 2D Gaussian profile. We compare the results of two peak detection
algorithms, à trous wavelets and robust background statistics. Since the true num-
ber of peaks is not known, several approaches to validate the result are discussed.
Also the cases when one of the algorithms outperforms the other are identified.

1. Simple pre-processing of micro-arrays

The first step in micro-array analysis is dividing the 2GB image in smaller regions
of interest, containing each one single spot. The division algorithm is performed on
a binned version of the original micro-array image, so that one pixel is the average
of a 10 × 10 pixels region of the original image. The binned input is thresholded
(via the Otsu method) and cleaned of small blobs, resulting in a few clear spots.

Projecting the cleaned image on the two axis, an approximated grid can be
reconstructed. Parallely, an artificial grid is built. In the binary cleaned image the
best (brightest) spot’s radius is selected as standard spot radius R and the median
of the inter-spot distances D is computed. The two grids are fitted to each other,
and the D is adjusted accordingly (figure 1)

Each spot is delimited by a rectangle described as a quadruple (left, upper, right,
lower) points, and it offers the advantage of automatically determining background
regions needed for signal-to-noise ratio analysis.

2. Spot detection algorithms

The spot detection algorithms that are analyzed in our study are:

(1) Mathematical morphology

(2) À trous wavelets
(3) Feature based statistics

1



2 LEILA MURESAN, BETTINA HEISE

200 400 600 800 1000 1200 1400

200

400

600

800

1000

1200

1400

1600
200 400 600 800 1000 1200 1400

200

400

600

800

1000

1200

1400

1600
200 400 600 800 1000 1200 1400

200

400

600

800

1000

1200

1400

1600

Figure 1. Approximated grid and overlap of the two griddings
before and after fitting (dark blue - reconstructed grid, yellow -
generated grid, red - difference)

Figure 2. Result of the pre-processing step (red - left upper cor-
ner, yellow - right lower corner of the region of interest)

2.1. Mathematical morphology. We shall use the mathematical morphology
methods in order to have a first approximate for the signal in the spot. This is the
traditional approach to analyze micro-array data [1, 2], but in our case we shall use
it only as a test or as to identify the density of signal peaks (high value - ensemble
-regime, low value - single peak counting is possible). If the spot density is too
high, the task of counting single spots becomes impossible (classical mean intensity
methods have to be applied).

2.2. À trous wavelets. The à trous wavelet method, described in [4] consists of
successive B-spline kernel convolutions. Initially the original image is convolved
with the kernel K0, a B-spline of order 3, A1 = Original ∗ K0, where :
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The smoothed image is than convolved with a kernel obtained from the kernel of
the previous step, by inserting between each line and each column of the old kernel
a line and a column of zeros, respectively.

The wavelet coefficients at step i are: Wi(x, y) = Ai(x, y) − Ai−1(x, y). After J

steps:

(2.2.1) Original(x, y) = AJ(x, y) +

J
∑

i=1

Wi(x, y)

The advantage of this image decomposition is the fact that real features tend to
be persistent over the scales. So, if we set:

(2.2.2) Wi(x, y) = 0,
Wi(x, y) − µ

σ
< 3

and compute

(2.2.3) SpotJ(x, y) =
n

∏

i=1

Wi(x, y)

the bigger the value of SpotJ(x, y) the bigger the likelihood of a spot at location
(x, y).

2.3. Robust background statistics. The robust background statistics method
was thoroughly described in [3]. We only mention that is based on the modified
z-score method for outlier detection. The outliers in several features are forming
the set of spot candidates. This set is clustered in three subsets according to
their acceptability level: the class of best, sharpest spots, acceptable spots and the
uncertain / out-of-focus spots. The best results were obtained for the Gustafson-
Kessel clustering algorithm. The features considered in this paper are: the mean
intensity value over a window of size three and the intensity value of the Laplace
-filtered image.

3. Performance criteria

In order to analyze the two algorithms first the results obtained for synthetic
test images are compared. A summary of the results is given in table 1. The results
of the robust background estimation method are better (even though the density
and the noise level in some of the test images are worse than many in the real case).

For real data, in a totally analyzed microarray the correlation coefficient between
à trous wavelet method and robust background can give a measure of the reliability
of these methods. For the micro-array in figure 2 the correltaion coefficient is 0.865.
The robust background method is affected if single spots cannot be recognized
(approximately 20 spots cannot be directly analyzed for the micro-arry in figure 2).
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Spots Number of spots À trous method Robust background
Gaussian, N(0,0.08) 1000 506 967
Gaussian, N(0,0.08) 10000 467 1824

Poisson 1000 939 955
Poisson 10000 1198 6725

Table 1. Comparison of the results

However, if we elminate these worst cases, when single peaks cannot be detected,
the correlation coefficient improves to 0.935.

The sensitivity of the new micro-array data can be tested also by making use of
the empty spots. Some of the spots of the micro-array do not contain oligos (so
should not contain peaks either). The position of these spots is known (in our case
34 such spots). The two algorithms are performed on these spots, and the mean
mEmpty and standard deviation σEmpty of the number of detected (false) peaks are
computed.

Spots containing less then mEmpty +3 ·σEmpty peaks are considered empty. The
number of empty spots in the analyzed micro-array for the wavelet methods is 72,
while for the robust background is 76.

The reliability of the result can be measured also by comparing the signal mean
intensity with the variance of the background. The latter is approximated from the
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Figure 3. Result for à trous wavelets plotted against the robust
background statistics method

0 5 10 15 20 25 30 35
0

50

100

150

200

250
Peaks in empty spots

A trous
Robust Background

Figure 4. Peaks detected in empty spots. Blue - à trous wavelet
method, red - robust background method
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Figure 5. Peaks detected by à trous wavelet method and robust
background method (for each spot). Red line - threshold under
which the spot is considered empty

neighbouring background areas (as resulting from the detection of region of interest
in 2). The signal intensity is measured for each of the resulting class as described
above.

4. Conclusions

In this paper we presented some of the challenges of spot detection in fluorescence
microscopy images, and we compared the performance of two distinct algorithms.
The à trous wavelets method can handle a wider range of oligo densities, but
seems somehow less sensitive then the robust background method. The latter has
to be complemented by a simple algorithm, that determines the bi-modality of
the intensity histogram (in order to detect the single-peak regime, in which this
approach is powerful).
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Image Segmentation for DIC images of cells 
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Introduction 

 
Well-performed image segmentation is the crucial point for further feature extraction and 
object classification. In the field of medical image processing the biological structures 
often are not clearly separable from background or are touching and overlapping each 
other. Especially if a classification by only slightly varying shape criteria is requested a 
careful segmentation is necessary.  
Segmentation methods can be divided into three main groups: threshold based methods, 
region growing methods and edge based methods. Segmentation based on threshold 
mostly uses the intensity as criteria, but furthermore also texture features, scale or colors 
(for rgb-images) can be applied. Although global threshold methods are fast and can be 
automated (e.g. Otsu algorithm), they can fail if features are overlapping, e.g. if 
background intensity is not uniform, in case of high noise or in our special case of DIC 
images, (Fig.1). An improvement is achieved by applying local adaptive thresholds, 
(Fig.2). Nevertheless, the results are sensitive to noise and an additional offset depending 
on SNR must be used. 
 

  
Fig.1: Bi-level threshold of Jurkat cell DIC 
image 

Fig2: Local adaptive threshold of the 
iterative Hilbert transformed DIC image 

 
Region growing methods are performed either, starting with randomly distributed seeds 
or as regular image pyramid (Gaussian or Laplacian pyramid) merging and splitting 
neighbored regions in a strictly hierarchical way. The realization also can be done in a 
fuzzy version. The influence of noise can be reduced by an appropriate choice of merge 
and split parameters, but on the other side the whole iterative computation of the 
hierarchical structure is computational expensive.  
Edge based methods suffer from the discontinuity of the edges and need additional edge 
linking methods. 
 
 



 
PDE based image segmentation 

 
As a further approach PDE-based methods for image segmentation are considered. 
Classical PDE- methods for image reconstruction can be written as 
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where u0(x,y)  denominates the original image and u(x,y,t) the reconstructed image at time 
t. The choice of F should be balanced between two different targets, the edges have to be 
preserved and the noise should be smoothed. Non-linear diffusion by Perona-Malik can 
be an approach for these aims. 
The general segmentation problem can be described by the Mumford-Shah Functional 
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which has to be minimized. The first term describes the image similarity, the second term 
controls the smoothness of the area and the third term controls the smoothness of the 
contour C. λ, μ, ν are positive parameters. The problem can be further simplified by the 
restriction of JMS to only piecewise constant functions u, in our case taking only  two 
intensity values- c1 equal to the average value of u0 inside the contour C and c0 equal to 
the average value of u0 outside the contour C. 
The evolution of the curve C can also be expressed by level set formulation: 
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In many applications the intensity gradient on the boundary is low or vanishes nearly 
completely. By the introduction of an Heaviside function H(Φ) we can cope this problem 
and the formulation of the minimization problem by means of  this function gives the 
Chan-Vese Functional [1] 
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The minimization of this functional is equivalent to the solution of the PDE 
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with the initial value condition 
 

),()0,,( 0 jitji ϕϕ == . 
 
It can be shown that the constants c1 and c0 are minimizing JCV if 
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Implementation and results 
 

The method was numerically implemented as described in [2]. The Heaviside function 
H(Φ) and its derivative δ= H’(Φ)  are realized in a smoothed version by 
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Tests were performed for different parameter sets (time step, ε, μ, number of iterations) 
and for different initial functions. The results are displayed in Fig.3a-c. The DIC images   
are transformed by iterative Hilbert Transform before applying the level set method. 
 

  
Fig.3a: Image segmentation into 
foreground–background by level set 
method, 
δt=0.01, ε=0.5, 20 iterations 

Fig.3b: Image segmentation into 
foreground–background by level set 
method, 
δt=0.01, ε =1, 100 iterations 



 

 

Fig.3c: Overlay of the finally extracted cell 
boundary with parameter setting as in 
Fig.3b  

 

 
Also level set methods are sensitive to noise and results can converge to a noisy solution 
(Fig.3a). But by an appropriate choice of the parameter, especially of the Heaviside 
function slope parameter ε, a sufficient segmentation can be performed (Fig.3b and c). A 
further improvement -especially in our case of images suffering from a streaky noisy 
background structure-can be achieved by an anisotropic regularization formulation. 
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