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Abstract — When creating regression models from data the problem arises that the complexity
of the models rapidly increases with the number of features involved. Especially in real world
application where a large number of potential features are available, feature selection becomes a
crucial task. In this paper we will present a novel approach to feature selection which uses bac-
terial optimization to identify the optimal set of features with respect to a given learning problem
and a given learning algorithm. This approach ensures high accuracy and significantly increases
interpretability of the resulting models.
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2 2 Feature selection

1 Introduction

To create regression models from data several methods like statistical regression, neural networks,
or regression tree methods [10] exist. The problem, however, arises that the complexity of these
models rapidly increases with the number of features involved. This causes two major problems:
On the one hand, some features may have a very low bias but a high variance and mislead the
regression methods. On the other hand a large number of predictors decreases interpretability, as
the major influences are likely to be shadowed by other unimportant features. Furthermore, taking
measurements is often a time consuming and costly task. Reducing the number of measurements
(features) used is therefore an important design goal.

Dimension reduction or feature selection can be used to reduce the dimensionality of the origi-
nal state space (i.e. to reduce the number of features under investigation). While dimension reduc-
tion methods like Principal Component Analysis (PCA) [2] use projection methods which often
cumber interpretation of the resulting models, feature selection methods aim to identify the most
relevant features out of the original set of features [5,8].

Nature inspired some evolutionary optimization algorithms suitable for global optimization
of even non-linear, high-dimensional, multi-modal, and discontinuous problems. The original
genetic algorithm was developed by Holland [7] and was based on the process of evolution of
biological organisms. It has been successfully applied to the problem of feature extraction [11,12].
The drawback of genetic algorithms, however, is that they require a large number of iterations. A
more recent approach is the bacterial evolutionary algorithm. This gives an alternative to other
algorithms because it is simpler and it is possible to reach lower error levels within a short time.
This method includes two new operations inspired by the microbial evolution phenomenon. The
bacterial mutation operation which optimizes the chromosome of one bacterium, and the gene
transfer operation which transfers information between different bacteria within the population.

In this paper we will present a novel approach to feature selection using bacterial optimization.
First, the general problem of feature selection is described in Section2. Then, in Section3 the
bacterial algorithm is introduced and we show how this method can be applied to the problem of
feature selection. In Section4 some simulation results are presented to show the potential of this
new approach.

2 Feature selection

Let us consider the following general setting: LetU = X×Y be our universe of discourse, where
X is then-dimensional input space andY the one dimensional output space. The overall goal of
the learning process is to find a functionf : X 7→ Y which models the inherent relation between
the input and the output space. In machine learning this functionf is induced from a set of training
samplesS ⊂ X × Y by minimizing an error measureE(f,S). Usually the average squared error
is used

E(f,S) =
1
|S|

∑
(x,y)∈S

(
f(x)− y

)2
.

An increase in the dimensionality of the input space increases the complexity of this learning
problem. When features with only minor or no relation at all to the output space are involved,
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the resulting functionf might tend to overfit the training data. Although various methods exist to
overcome these problems, it is often more efficient to reduce the number of features in advance.

Feature selection can be described as the task of identifying an optimal subset ofm out of
the availablen features. The resulting subset ofm features is then used to compute a functionf̄ ,
which maps from them-dimensional input spacēX to the output spaceY .

In the following we will discuss a so-calledwrappermethod for feature selection which uti-
lizes the regression learner as a black box to score a subset of variables according to their overall
predictive power. In contrast tofilter methods which aim to identify the most relevant features be-
fore the actual learning step, wrapper methods are able to identify relevant combinations of input
features, too. As the problem of finding an optimal subset of features is known to be NP-hard [1],
intelligent search strategies are essential. Such intelligent strategies provide suboptimal solutions,
however, they approximate the optimum rather well.

3 Bacterial optimization

There are several optimization algorithms which were inspired by the processes of evolution.
These processes can be easily applied in optimization problems where one individual corresponds
to one solution of the problem. An individual can be represented by a sequence of numbers that
can be bits as well. This sequence is calledchromosome, which is nothing else than the individual
itself. In bacterial algorithms, the bacteria can transfer genes to other bacteria. This mechanism
is used both in thebacterial mutationand thegene transferoperations. The latter substitutes
the genetic algorithms crossover operation, so information can be transferred between different
individuals.

3.1 The encoding method

In bacterial algorithms, one bacteriumξi, i ∈ I corresponds to one solution of a given problem.
First, we have to define how a solution is encoded in such a bacterium (chromosome). For the task
of selectingm features from a set ofn features (m ≤ n), the bacterium consists of a vector of
integersξi = {ξ1

i , . . . , ξm
i }, 1 ≤ ξk

i ≤ n, whereξk
i 6= ξl

i for k 6= l.

3.2 The evaluation function

Similar to genetic algorithms the fitness of a bacteriumξi is evaluated using anevaluation func-
tion φ(ξi). The choice of this evaluation function is problem dependent. For the task of feature
selection we use the features encoded in bacteriumξi and the training data setS to compute a
regression modelfi according to:

fi(x) : Xξ1
i
× . . .×Xξm

i
7→ Y.

The evaluation function is then computed as the average squared error of the input-recall behavior
of this model on test data setT ⊂ X × Y :

φ(ξi) = E(fi, T ).
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3.3 The evolutionary process

The basic algorithm consists of three steps [3, 9]. First, an initial population has to be created
randomly. Then, bacterial mutation and gene transfer are applied, until a stopping criteria is
fulfilled. The evolution cycle is summarized below:

Bacterial Optimization

create initial population
do {

apply bacterial mutation
apply gene transfer

} while stopping condition not fulfilled
return best bacterium

3.4 Generating the initial population

First an initial bacterium population ofNind bacteria{ξi, i ∈ I} is created randomly(I =
{1, . . . , Nind}). Figure1 shows a bacteriumξi with n = 50 andm = 5.

44 17 36 2 7

Ξi
1 Ξi

2 Ξi
3 Ξi

4 Ξi
5

Figure 1: A single bacterium

3.5 Bacterial mutation

Bacterial mutation is applied to all bacteriaξi, i ∈ I. First,Nclones copies (clones) of the bacterium
are created.

ξi,j = ξi, ∀j : 1 ≤ j ≤ Nclones

Then, in each cloneξi,j a random partk of the chromosome is replaced by a random number
smaller or equal thann (ξk

i,j = Random[n]). When we change a part of a bacterium, we must
take care that the new part is unique within the selected bacteriumξk

i 6= ξl
i for k 6= l. Next, all the

clones and the original bacterium are evaluated using the evaluation functionφ(ξ). The bacterium
with the best evaluation result is used to transfer the mutated part to the other individuals. This
cycle is repeated for the remaining parts, until all parts of the chromosome have been mutated and
tested. At the end, the best bacterium is kept and the remainingNclones are discharged. Figure2
shows an example mutation forNclones = 3.

3.6 Gene transfer

The bacterial mutation operator optimizes the bacteria in the population. Often, however, this is
not enough as we need to provide a possibility for some information flow within the population.
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44 17 36 2 7

Φ HΞL = 0.8

ß

44 17 36 2 7

Φ HΞL = 0.8

44 17 20 2 7

Φ HΞL = 0.5

44 17 35 2 7

Φ HΞL = 0.9

44 17 40 2 7

Φ HΞL = 0.7

ß

44 17 20 2 7

Φ HΞL = 0.5

44 17 20 2 7

Φ HΞL = 0.5

44 17 20 2 7

Φ HΞL = 0.5

44 17 20 2 7

Φ HΞL = 0.5

ß

44 17 20 2 7

Φ HΞL = 0.5

33 17 20 2 7

Φ HΞL = 0.7

16 17 20 2 7

Φ HΞL = 0.4

21 17 20 2 7

Φ HΞL = 0.9

ß
etc.

ß

16 17 20 2 19

Φ HΞL = 0.3

Figure 2: Bacterial mutation

Using the gene transfer operator, the recombination of genetic information between two bacteria
is possible.

1. First, the population must be sorted and divided into two halves according to their evaluation
results. The bacteria with a higher evaluation are called superior half, the bacteria with a
lower evaluation inferior half.

2. Then one bacterium is randomly chosen from the superior half and another from the inferior
half. These two bacteria are called the source bacterium, and the destination bacterium,
respectively.

3. A part from the source bacterium is randomly chosen and this part is used to overwrite a
random part of the destination bacterium if the source part is not already in the destination
bacterium.

Gene transfer is repeatedNinf times, whereNinf is the number of "infections" per generation.
As a default valueNinf is set toNind − 1. Figure3 shows an example for the gene transfer
operations (Nind = 4, Ninf = 3).

3.7 Stopping condition

If all individuals in the population are equal or the maximum number of generationsNgen is
reached then the algorithm ends, otherwise it returns to the bacterial mutation step. Typically, a
small number of generations (below 20) already leads to good results.
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Φ HΞL = 0.3
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21 18 5 39 25

Φ HΞL = 0.6

30 3 9 27 32

Φ HΞL = 0.8
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33 31 20 7 4
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Φ HΞL = 0.7
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Φ HΞL = 0.3

21 31 36 39 25

Φ HΞL = 0.4

33 31 20 7 4

Φ HΞL = 0.5

30 3 9 27 32

Φ HΞL = 0.8
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16 17 36 2 19

Φ HΞL = 0.3

21 31 36 39 25

Φ HΞL = 0.4

33 31 20 7 4

Φ HΞL = 0.5

30 3 9 2 32

Φ HΞL = 0.6

Figure 3: Gene transfer

4 Simulation results

The bacterial optimization used for the following simulations was realized in Mathematica. We
used three different regression methods to analyze the behavior of the algorithm—a simple least-
squares optimization and two fuzzy rule base induction systems. We applied the bacterial opti-
mization for all of the regression methods to find a solution for three high-dimensional problems.

The first test function was defined over a 20-dimensional data space[0, 1]20 according to:

f20(x) = x1x
2
2x

3
13 − x20 + 5 sin(x16) − 25 cos(x5x18) + exp(x3x5) + x4x19 + x2

10 + x5
11.

The second test function was defined over[0, 5]50 according to:

f50a(x) = x1x
2
40 + 0.01 x12 + 0.01 x15 + 3.1x49.

The third test function was defined over[1, 2]50 according to:

f50b(x) = x1 + x
1
2
2 + x3x4 + 2 exp(2(x5 − x6)) + x7x8x9 −

x10

x11x12
+ 0.5 x3

13 + x2
14x15−

x16 − x17 + 50
x18 + x19

x20
+ x46

We created 500 training samples for each test function by assigning each input dimension a ran-
dom number with equal distribution. Each of the chosen functions have random behavior in the
remaining dimensions generated by a random generator. Many simulations were made (see Table
1), some typical results are discussed in this section.

4.1 Statistical fit function

In the first example we created a prediction model by computing a least-squares fit to the data as a
linear combination of the input features.
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Although good results have been achieved with the initial settings for the first test function,
a better solution was found when increasing the number of clones in the second run. In the third
and fourth run, the number of goal dimensions was increased to ten, which significantly improved
the obtained results. When using two bacteria, the solution was found earlier than with only one
bacterium. In the first case all individuals were the same in the third generation.

For the second test function, we tried to identify the three most important dimensions. In the
first run, we used one bacterium and five clones, in the second four bacteria, four clones and two
gene transfer operations in each generation. The optimal solution was found in the fifth and fourth
generation, respectively. The solution found was{40, 49, 1} and from the definition of the function
it is easy to see, that these are in fact the most important variables. When the bacterium length was
set to five two additional variables were found, but the overall performance only slightly increased.
The learning curves for this problem are shown in Figure4.

With the initial setting used for the third test function, 16 generations were needed. When the
number of clones was increased, the optimal solution was found already in the eighth generation.
By increasing the number of individuals and by applying gene transfer, the algorithm was able to
find the optimal solution in six generations. In the second case we set the length of one bacterium
to ten. When using four clones the solution was not optimal. A lower error level was reached
using six clones. When using four bacteria instead of one, the same solution was found already in
the fifth generation, and all bacteria were equal in the 20th generation.

4.2 RENO optimization

In this example we created a prediction model using a fuzzy rule induction method calledRENO
[6]. RENO first computes a set of equally distributed fuzzy sets for each input dimension. Then
for each element of the cartesian product of these fuzzy sets a TSK rule is created. Finally, the
resulting rule base is optimized using a regularized numeric optimization technique to tune the
fuzzy sets and the linear approximation on the right-hand side. Although this methods leads to very
accurate and stable models, it is limited to low dimensional problems (n ≤ 8) as the number of
rules increases exponentially with the number of dimensions involved. Therefore feature selection
is crucial when applying it to higher dimensional problems.

When applying RENO optimization, we always tried to identify the three most important
variables. With the first test function, the same solutions were found in all runs. In the case
where we applied not only one individual, all individuals became identical after four generations.
The best individual found was{18, 5, 16} which are indeed the most important variables of this
function.

For the second test function, no satisfying solution was found in a first attempt. After increas-
ing the number of clones to four, however, a good solution was found. Increasing the number of
bacteria and applying gene transfer led to the same solution. The learning curves for this problem
can be found in Figure5.

For the third test function an optimal solution was found using four clones. When using four
individuals, the solution was found earlier. Increasing the number of clones, however, misled the
algorithm and no good solution was found.
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Figure 4: Simulation result for the second function using linear approximation
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Figure 5: Simulation result for the second function using RENO
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Table 1: Settings of the parameters

f method Ngen Nind Nclones Ninf m error b. gen. best bacterium
f20 LINA 10 1 4 0 5 1.41 3 {18, 16, 20, 5, 10}
f20 LINA 10 1 6 0 5 1.40 3 {18, 10, 5, 16, 11}
f20 LINA 10 1 4 0 10 1.25 8 {4, 5, 16, 20, 3, 18, 11, 10, 17, 15}
f20 LINA 10 2 4 1 10 1.25 1 {4, 18, 5, 20, 3, 15, 17, 16, 10, 11}
f20 RENO 10 1 4 0 3 0.36 3 {5, 18, 16}
f20 RENO 20 1 6 0 3 0.36 1 {5, 16, 18}
f20 RENO 20 2 6 1 3 0.36 3 {18, 5, 16}
f20 FS-ID3 10 1 4 0 5 1.99 3 {13, 14, 16, 5, 18}
f20 FS-ID3 10 1 6 0 5 1.99 3 {16, 13, 5, 18, 9}
f20 FS-ID3 10 1 4 0 10 2 2 {20, 6, 16, 5, 15, 10, 14, 18, 13, 3}
f20 FS-ID3 10 2 4 1 10 2.06 1 {8, 18, 12, 16, 6, 5, 4, 3, 7, 10}
f50a LINA 10 1 5 0 3 131.38 5 {49,1,40}
f50a LINA 10 4 4 2 3 131.38 4 {40,49,1}
f50a LINA 10 1 6 0 5 130.71 10 {9,4,40,49,1}
f50a LINA 10 2 4 1 5 130.78 6 {40,9,27,1,49}
f50a RENO 10 1 3 0 3 21.93 9 {1,8,40}
f50a RENO 10 1 4 0 3 1.82 8 {1,49,40}
f50a RENO 10 4 3 2 3 1.82 10 {49,40,1}
f50a FS-ID3 10 1 4 0 3 334.29 4 {37,33,40}
f50a FS-ID3 10 1 6 0 3 77.87 10 {40,24,1}
f50a FS-ID3 10 1 8 0 3 77.87 7 {40,24,1}
f50a FS-ID3 20 4 6 2 3 77.87 12 {24,40,1}
f50b LINA 20 1 4 0 5 29.49 16 {19, 18, 20, 14, 6}
f50b LINA 20 1 6 0 5 29.49 8 {19, 14, 20, 18, 6}
f50b LINA 20 4 6 2 5 29.49 6 {20, 6, 18, 14, 19}
f50b LINA 20 1 4 0 10 25.22 11 {14, 17, 5, 6, 9, 20, 8, 15, 19, 18}
f50b LINA 20 1 6 0 10 24.58 14 {19, 6, 8, 15, 14, 5, 18, 9, 13, 20}
f50b LINA 20 4 6 2 10 24.58 5 {15, 18, 20, 5, 9, 14, 19, 13, 6, 8}
f50b RENO 10 1 4 0 3 10.15 10 {19, 18, 20}
f50b RENO 10 1 6 0 3 97.39 10 {37, 19, 20}
f50b RENO 10 4 4 2 3 10.15 8 {20, 18, 19}
f50b FS-ID3 20 1 4 0 5 57.51 20 {20, 19, 39, 18, 25}
f50b FS-ID3 10 4 4 2 5 55.71 8 {19, 18, 20, 36, 35}
f50b FS-ID3 20 1 4 0 10 54.4 16 {40, 26, 19, 17, 30, 25, 18, 20, 9, 46}

4.3 Decision tree optimization

Finally, we used the proposed method to optimize the performance of an inductive fuzzy decision
tree learning methodFS-ID3[4]. This method uses a top-down approach to create a decision tree,
which can be applied for classification as well as for regression problems. Although this method
is capable of dealing with a large number of input features, stability and interpretability can be
improved using only a subset of the available features.

For the first test function the solution was found quickly both with length five and ten. For the
second function, more number of clones led to a better solution. For the third function, the trials
where more individual were used gave better result. These examples illustrate the importance of
the number of generations, as the optimal solution may only be reached in a latter generation.
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4.4 Conclusion

The examples given illustrate that the proposed method can be used in combination with various
existing methods for regression as well as for classification tasks.

Compared to classical genetic algorithm, the bacterial evolution process converges faster. An-
other advantage of the method is that the gene transfer operator can be realized easier than the
crossover operator in GA, because in the crossover operation the multiple appearing of all the
elements in the whole chromosome has to be checked, while in the crossover operation only the
transferred part needs to be checked.

In our simulations it turned out, that increasing the number of generations and the number of
individuals also increases the performance of the algorithm. Increasing these parameters, however,
causes additional computational effort.

Finding the optimal number of clones is a more subtle problem. A small number of clones
(below four) causes the algorithm to get stuck in local minima as no new information is available
from other clones. If the number of clones is too large, the algorithm converges too fast and might
get stuck in a local minima, too.

The choice of the number of gene transfers is correlated with the number of individuals. Using
N individuals without gene transfer is similar to running the algorithm with only one individual
butN times. The gene transfer operator enables interaction between the bacteria in the population.
In some way, the local solutions are compared and enable the algorithm to find the global optimum.

5 Outlook

Future work will be concerned with extending the bacterial optimization to identify not only the
optimal subset of a given size, but to find the optimal size of this subset, too. Additionally, we
intend to investigate different bacterial operators which change not only one number, but a longer
part of the chromosome to avoid local optima. Furthermore, we plan to implement a sub-sampling
strategy to reduce the computational complexity of the evaluation function. Finally, we want to
investigate more effective stopping criteria.

Acknowledgements

This research was supported by the National Scientific Research Fund OTKA T034233, T034212
and T043177, a Széchenyi University Research Grant 2004, the National Research and Develop-
ment Project Grant NKFP-2/0015/2002 and CEEPUS SK-42 Grant.

This work has partly been done in the framework of the Kplus Competence Center Program
which is funded by the Austrian Government, the Province of Upper Austria, and the Chamber of
Commerce of Upper Austria.



References 11

References

[1] E. Amaldi and V. Kann. On the approximability of minimizing nonzero variables or unsatis-
fied relations in linear systems.Theoretical Computer Science, 209(1–2):237–260, 1998.

[2] C. M. Bishop.Neural Networks for Pattern Recognition. Oxford University Press, 1995.

[3] J. Botzheim, B. Hámori, L. T. Kóczy, and A. E. Ruano. Bacterial algorithm applied for
fuzzy rule extraction. InProc. Int. Conf. on Information Processing and Management of
Uncertainty in Knowledge-Based Systems, pages 1021–1026, Annecy, France, 2002.

[4] M. Drobics and U. Bodenhofer. Fuzzy modeling with decision trees. InProc. 2002 IEEE
Int. Conf. on Systems, Man and Cybernetics, Hammamet, Tunisia, October 2002.

[5] I. Guyon and A. Elisseeff. An introduction to variable and feature selection.JMLR, 4:1157–
1182, 2003.

[6] J. Haslinger, U. Bodenhofer, and M. Burger. Data-driven construction of Sugeno controllers:
Analytical aspects and new numerical methods. InProc. Joint 9th IFSA World Congress and
20th NAFIPS Int. Conf., pages 239–244, Vancouver, July 2001.

[7] J. H. Holland. Adaptation in Natural and Artificial Systems. The MIT Press, Cambridge,
MA, first MIT Press edition, 1992. First edition: University of Michigan Press, 1975.

[8] M. Last, A. Kandel, and O. Maimon. Information-theoretic algorithm for feature selection.
Pattern Recognition Letters, 22:799–811, 2001.

[9] N. E. Nawa and T. Furuhashi. Fuzzy system parameters discovery by bacterial evolutionary
algorithm. IEEE Tr. Fuzzy Systems, 7:608–616, 1999.

[10] J. R. Quinlan.C4.5: Programs for machine learning. Morgan Kaufmann, San Mateo, CA,
1993.

[11] H. Vafaie and K. De Jong. Genetic algorithms as a tool for feature selection in machine
learning. InProc. 12th IEEE Int. Conf. on Tools with Artificial Intelligence, pages 200–204,
Arlington, VA, 1992.

[12] D. Whitley, J. R. Beveridge, C. Guerra-Salcedo, and C. Graves. Messy genetic algorithms for
subset feature selection. In Thomas Bäck, editor,Proceedings of the Seventh International
Conference on Genetic Algorithms (ICGA97), San Francisco, CA, 1997. Morgan Kaufmann.





Knowledge Based Methods in 
Management 

 
Thomas Biringer 

E-Mail : Thomas.Biringer@magnasteyr.com 
 
 
 
 
 

 
Abstract: --- In the car production industry the time to market is in the future a 
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Reffering to the topic „start-up-management“ there are no essays which ones 
demonstrate the whole process incipient with development up to start of production, 
inclucing all involved divisions. There are no fruitful disquisitions beyond the 
extensive cohesions among development, logistics, serialproduction und their 
interact. So there is no basis for controlling a startup and for rating the existing risk to 
meet the deadline, achieve quality and expenses. Presently there is no conclusive 
knowledge base for a start of production. It´s interesting to regard the start up 
concerning „novel product, new  craft, new employees“ from the point of view of the 
producing plant. To my mind it´s witted – on the basis of the experience of the 
successful start up – to create a knowledge base for future startups and modeling the 
start up with new techniques for knowledge engineering and to compare the results 
of modeling to the values of the real start up. 
 
 
 
Within the start up it became clear, that - due to the huge complexness of the 
organisational structure -  the present „Technomorphe Managementsystem“ is on 
upper bound respectively the networked processes can´t be acquired conclusive and 
the parameters as a whole don´t  flow into decision making. Due to the nonlinear 
mutual processinteractions and the non-controllable complexity there often arises a 
limited consideration for problems, whereby the management is pushed into a 
reactive part respectively in worst case, it elects for a non-target-oriented measure. 
Due to the ever-shortend development-period it comes as well to a intensive 
integration of processes. Thus it´s essential to find the primal factors of success to 
control the start of production. 
To find the essential factors (canals with huge information content), there should be 
applied new treatments from different fields of knowledge (such as Maschinenlernen) 
and be checked on their capability.  
In „Technomorphen Systemen“, where it´s assumed, that enough information is 
available, it´s applied at best in clear systems, so it´s needful to arrange a 
“Systemisches Modell”, what it used as base for controllability “Maschinenlernen”.  
In line with „Maschinenlernen“ it´s essential to use a  algorithm, what isn´t just adopt 
to anticipate information, but to bring out a linguistic context from observed facts out 
of the basic start-up.  By this means it gets possible to operators, to discover 
abnormal cohesions out of the basic start-up and if necessary taking corrective 
action. 
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2.1 Constructivist Technomorphe System 

Optimality  
The constructivist approach is the ambition on optimality, therefore complete 
information is essential. [1] 
From the point of the “technomorphen“ view, optimisation is equal to elimination 
of flexibility (in according to engine: An engine can be construct and optimized 
the better the more firm its input is and the lighter fluctuation due to quality and 
quantity. q.v.: Out of ideal batch sizes in production result therefore essentially 
low limits of variation and thus the loss of response-flexibility). There never 
exists enough knowledge for decissions. 

Profit-maximizing 
For this type „advantage-maximizing-cerebration“ is immanent. It´s not about 
the  discussion on details but about the question, what important factors admit 
to minimize the danger of systemic wrong-decissions. [2] 
To realize profit it´s necessary  to have profit-potential as well as future profit-
potential in condition to earn future-protits. 

Sufficient information-base 
In line with the construktivist typ of theory it´s normally assumed, that the 
information-base is in the main sufficient for the solution of discussed problems. 
The blank spaces of information are filled with subjektive probability-estimates. 
This pretended gained security applies in context just in bounded real systems. 
[3] 
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2.2 System- evolutionary systems 

 Controlability  
  
Cosindering the premise that a permanent adaption to situations is necessary, 
optimization can only make sense on a meta level. Therefore not a single state 
of adaption has to be optimised but if anything at all the adaptiveness has to be 
optimised. The contolability and the manageability of a company has to be 
optimised . [3] 
Pay attention: Ideal organizations from the past may be crucial obstacles for 
modern adaptions. 
  

 Ability to live maximization 
  
The system- evolutionary approach aims at companies in particular and 
systems in general. The ability to live of companies and systems is not meant 
to be a formal criteria but to be considered in the content of an empiric problem. 
There are problems that can be solved and others that can't. Therefore the 
ability to live can be seen in relation to the controllability of a company, since 
the ability to live is a preliminary proof, that the complexity of the system can be 
controlled . [4] 
  

 Never enough knowledge existing 
  
The systemic type explicitly assumes, that there is not enough information for 
legitimating decisions.  The association to legitimate a decision is wrong. [3] 
This teaches us to possibly make decisions, of which most of the 
consequences can be withdrawn. 
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Approach of machine learning without linguistic description 
 

 

{ }

{ }

1 1 2 2

1 1 2 2

( , ), ( , ),.....( , )
Sought after: Function f with
ˆ ˆ( )

Target:Good prediction
( , ), ( , ),.....( , )

L L

M M

T x y x y x y

f x y y

G x y x y x y

=

= ≈

=

 

 
 
Because of the enhancement of machine learning about the linguistic description the 
system knowledge is expanded from pure data analyze with interpretable knowledge. 
 
 

with interpretationˆ ˆ ˆf ( x ) y y y y y= ≈ ≈ +  
 
Thereby you are able to calculate the inversion of this problem. Therefore it is 
possible to modify the input data because of the knowledge of the required initial 
state. 
 

1ˆ ˆ ˆ( ) with interpretationf y x y y− = ≈ + y  
 
For this purpose it is necessary to describe the impact data and parameters from the 
system with exact linguistic data.  
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Complex lunch structure 
Description of all input data in linguistic way. For handling this problem an approach 
of a hierarchical controller design will be used. 
 

 
 

 
 
 

4 Conclusion 
This paper is written at the beginning of my PhD-thesis and shows a possible 
way to find dates for a knowledge based model.  
 

• an approximation with accuracy of forecast based on existing cognition 
as knowledge base for decision making. 

• a systemic evolutionary model in consideration of cybernetic aspects in 
adoption of learning structures as knowledge base, what is available for 
future start-ups. 
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1 Problem Description

The problem arises in multi layer print processes: different regions of an image are printed in
separate steps of work. Each such region is called a layer. Such a region separation is determined
by different colors or different print methods of the image parts. The print machines have to be
calibrated precisely, so that the print layers are correctly arranged. It could happen that some print
layers are incorrectly shifted with respect to each other. Figure1 shows such an error. The red
ellipse has an unwanted overlap with the blue rectangle on one side, while the gap on the other
side is much too wide. Some of such shifts may be tolerable while others are too severe.

In practice a few images are printed after precalibration and a digital image of such test prints
is investigated by a human print inspector, who decides, if the outcome is sufficiently precise and
recalibrates the print machines if not. He masks each region of the print layers and looks, if each
such region is correctly positioned with respect to regions of other layers especially neighboring
ones. In figure1 we can easily recognize that such an image probably consists of three print layers
(figure2). For complicated prints these regions are not easily identified, which makes this process
cost a lot of time.

Figure 1: Print Error

The goal of this work is to develop methods to make this error identification process faster, so
that the error detection time and thus the calibration time becomes as short as possible.

The problem is to identify the different print layers. A sufficiently large set of sample images
is given. Within the work it has exactly to be found out how many samples are needed to make the
set sufficiently large. Out of this sample set those regions have to be found, whose member pixels
underlie common affine transformations from each sample to any other. The identification will be
realized in an offline process. It is not important to identify a whole print layer as one, it is enough
to identify each part of a print layer as a connected region.
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