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1 Introduction

Directed acyclic graphs (DAGs or ADGs) are used to representconditional inde-
pendencies among random variables, e.g., in Bayesian networks. Bayesian net-
works are used in fields like medicine, image processing, meteorology, or gener-
ally in expert systems.

A DAG is a directed graph that contains no directed cycle. ABayesian net-
work (or directed graphical model) is a DAGG ≡ (V,E) together withn random
variablesXi and a joint-distributionP with the property that

P (X1, . . . , Xn) =
n∏

i=1

P (Xi | Xpa(i)),

where we use the notationXA = ×i∈AXi for A ⊆ V and, for a vertexi ∈ V ,
pa(i) is the set of all verticesj in V such thatj → i. Different DAGs can represent
the same conditional independence relations[4] among the random variables of
the Bayesian network, i.e., the DAGs are Markov equivalent.Here, we mainly
deal with counting essential graphs, which can be identifiedwith the equivalence
classes of this equivalence relation. For the definitions inthis section we often
follow Andersson[1], Harary[2], and Robinson[5].

If a→ c← b anda, b are not neighboured inG then we call the triplet(a, c, b)
animmorality. (c has unrelated parents.) Theskeletonof a graph is its underlying
undirected graph. Two DAGsD1 andD2 aregraphically equivalent, if they have
the same skeleton and the same immoralities. Theessential graphD∗ of a DAG
D arises by union of all DAGs, that are graphically equivalentto D. We say a
graph is anessential graphif it is the essential graph of some DAG.
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A pathπ froma to b in G is a sequenceπ ≡ {a = a0, a1, . . . , an = b} ⊆ V of
different vertices, such that(ai−1, ai) ∈ E for i = 1, . . . , n. A graph isstrongly
connectedif there is a path from every vertex to every other vertex.Thestrong
componentsof G are the maximal strongly connected subgraphs ofG. G is a
chain graphif its strong components are undirected connected graphs. The strong
components of a chain graphG are calledchain components.

An undirected graph ischordal (triangulated), if every cycle of length greater
than3 posses achord, i.e., two vertices that are not neighboured within the cycle,
but that are neighboured in the graph. An arrowa → b in a graphG is strongly
protectedin G, if a→ b occurs in at least one of the following configurations:

a b

c

(a): a b

c

(b): a b

c

(c): a b

c

(d):

c1

2

2 Characterisation of Essential Graphs

Theorem 1 (Andersson et al.[1]) A graphG = (V,E) is an essential graph, if
and only ifG satisfies the following four conditions:
(i) G is a chain graph;
(ii) for every chain componentτ of G, Gτ is chordal;
(iii) the configurationa→ b− c does not occur as an induced subgraph ofG;
(iv) every arrowa→ b ∈ G is strongly protected inG.

3 Enumeration of Labelled Essential Graphs

Let e(N,K,C) be the number of labelled essential graphs withN vertices,K
chain components, andC cliques (maximal connected undirected subgraphs) and
t(N,K,C) be the number of labelled chordal graphs withN vertices,K con-
nected components, andC cliques whereN,K,C ≥ 0.

Theorem 2 (Steinsky[7]) e(N,K,C) is equal to

N∑

n=1

(
N

n

) K∑

k=1

(−1)k+1
C∑

c=1

t(n, k, c)e(N − n,K − k, C − c)
(
2N−n − C + c

)k
, (1)

wheree(0, 0, 0) = 1.

We notice thatt(N,K,C) can be computed by methods of Wormald[9].

2



4 The Number of labelled Chain Graphs

Let cn be the number of labelled chain graphs withn vertices and

kn = −
n−1∑

r=0

(
n

r

)
kr2

(n−r
2 ),

for k0 = 1, n ≥ 1.

Theorem 3 (Steinsky[6]) We have

cn = −
n∑

r=1

(
n

r

)
krcn−r2

r(n−r),

wherec0 = 1 andn ≥ 1.

5 The Asymptotic Number of labelled Chain Graphs

Let

φ̃(z) =
∞∑

n=0

knz
n

n!2(
n
2)

Theorem 4 (Steinsky[8])

cn ∼ −
n!2(

n
2)

φ̃′(z̃0)z̃
n+1
0

, wherez̃0 ≈ 0.9477.

6 Asymptotic Number of labelled Essential DAGs

An essential DAG is a DAG that is also an essential graph or in other words, an
essential graph that has no undirected edge. Letas be the number of labelled
essential DAGs withs vertices,

h(z) =
∞∑

s=0

asz
s

s!2(
s
2)

∞∑

l=0

(−z)l

l!2(
l
2)

∞∑

i=1

(
zs

2l+s

)i

i!2(
i
2)

and

φ(z) =
∞∑

n=0

(−z)n

n!2(
n
2)
.

Theorem 5 (Steinsky[8]) We have

an ∼ −
(1− h(z0))n!2

(n2)

φ′(z0)z
n+1
0

= A
n!2(

n
2)

zn+1
0

.

wherez0 ≈ 1.488 andA ≈ 0.1275.
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Bridges Between Fuzzy Logic and Linguistic Models

of Vagueness

Christoph Roschger
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Adequate models of reasoning with vague information are not only of
perennial interest to philosophers and logicians (see, e.g., [6, 5, 12, 2, 11]
and references there), but also in the focus of linguistic research (see, e.g.,
[10, 7, 1, 8]). Of particular interest from a logical point of view are ap-
proaches to formal semantics of a natural language that can be traced back
to Richard Montague’s ground braking work, firmly connecting modern for-
mal logic and linguistics (see, e.g., the handbook chapter [9] and the widely
used textbook [4]). At a first glimpse, it seems that all important contempo-
rary linguistic models of vagueness are incompatible with the degree based
approach offered by fuzzy logic (see, e.g., [13, 14, 3]). E.g., Manfred Pinkal in
his frequently cited (and translated) monograph [10] explicitly argues that
many-valued, truth functional logics are inadequate for modelling central
linguistic phenomena of vagueness and indeterminateness. One of the key
points here is truth functionality : consider e.g. the following two sentences:

The sky is blue or the sky is not blue. (1)

The sky is blue or the sky is blue. (2)

If we assign the truth value 0.5 to both blue(sky) and ¬blue(sky), then
these sentences (1) and (2) will receive the same truth value in any (truth
functional) fuzzy logic. This goes, as Pinkal argues, completely against
human intuition.

More specifically, contemporary linguists seem to agree that a special
type of context dependency is the key to understand the semantics of vague
predicates (‘tall’, ‘nice’, ‘is a heap’, ‘enjoys’, ‘likes’, . . . ), but also of cor-
responding predicate modifiers (‘very’, ‘definitely’, . . . ) and quantifiers
(‘most’, ‘many’, ‘few’, . . . ). However, a closer look at corresponding re-
cent papers on vagueness, in particular [1, 8, 7], reveals that contexts are
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primarily used to keep track of varying standards of assertability connected
with gradable predicates. This observation is our starting point in explor-
ing formal bridges concepts from t-norm based fuzzy logic and the cited
linguistic models of vagueness.

I will show how fuzzy sets and fuzzy relations can be systematically ex-
tracted from a given context space endowed with a probability measure (or
more generally, possibility measure) intended to model the relative salience
and plausibility of different contexts (standards). Roughly speaking, the
membership degree of an individual a (say ‘Adam’) in a fuzzy set modelling
a predicate T (say ‘is tall’) gets identified with the probability — alterna-
tively: degree of possibility or degree of necessity — that a satisfies the
assertability standard associated with T in a randomly chosen context. In
this manner t-norm and co-t-norm based operators re-emerge as semantic
correlates of conjunction, disjunction, and other logical connectives, if one
insists on global evaluations that ignore all dependencies between context
specific standards pertaining to different predicates. In contrast, local eval-
uations, i.e. those referring to individual contexts, lead to an intensional
semantic framework, also for logical connectives. While an intensional eval-
uation, based on a specific context space, allows to model phenomena of
vague language [1, 8, 7] that escape the coarser truth functional approach of
fuzzy logic, the price to be paid for the more fine grained analysis is higher
computational complexity. In this respect, t-norm based truth functions
can be seen as efficient extensional approximations to potentially very com-
plex intensional evaluations with respect to context dependent assertability
conditions.
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Automatic Peak Detection for Terahertz Spectra
Dynamic Range Determination, Baseline Correction, and

Hierarchical Clustering
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Abstract

In pharmaceutical quality control, technologies are necessary that identify different chemical compounds. This

identification should be performed in a non invasive way. TheTerahertz (THz) technology has proven to be a useful

tool in that aim. In these wavelengths chemical compounds have characteristic absorption spectra while at the same

time most packaging materials such as carton, plastics, andceramics are not absorbing [1].

There are databases that contain the characteristic spectral expression of many chemical compounds in the infrared

range [2]. As an emerging technique most THz spectra are not comparably characterized yet. There are databases such

as [3] but the quality and method of acquisition declaredly differ. For most specific applications this is a problem.

Particularly to address this problem of comparability, we propose a procedure to detect peaks in THz measurements

of solids acquired by time-domain spectroscopy. On a set of six hyperspectral imaging measurements of chemical

compounds, this procedure will be presented here.

We especially propose a method to determine the Dynamic Range (DR) of spectra based on standard peak detection.

Furthermore, we propose a method for baseline correction. In spite of the normalization with a reference measurement,

most transmittance spectra do not have a constant baseline which makes the classification of peaks difficult. We

simulate the basic shape of the spectra and propose to use this to create such a constant baseline.

We illustrate this procedure with six measurements of chemical compounds,36 spectra each. We use unsupervised

learning, more particularly hierarchical clustering, to find a robust representation for these compounds by their peaks.

This shall illustrate how such a procedure can be used to build comparable THz databases.
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Men Take Moderately Higher Risks: Initial Results from a Visual
Inspection Study
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Abstract
Among manufacturing companies there is a widespread consensus that women are better suited to
perform visual quality inspection, having higher endurance and making decisions with better repro-
ducibility. We will analyze these gender-related differences by modeling operator decisions with machine
learning classifiers. The analysis will be based on data gathered during tests with 100 subjects asked
to rate synthetic images based on a predefined set of rules.

This paper presents interim results of the main study with 76 subjects tested so far. The analysis of
the results is based on the decision boundary modeled by the ground truth rule set. We show that the
test images have been sampled to achieve reasonable coverage of the relevant area around the decision
boundary. On average, subjects rate 74% of all images correctly.

We have found two statistically significant differences between the female and male subject groups:
(1) Based on the false positive and false negative rate of subject decisions we define a measure for risk
propensity. In line with the pilot study, male participants show significantly higher risk propensity, with
an effect size of d = 0.52. (2) We utilize rule-based classifiers trained on each subject to identify subject-
specific decision thresholds. The most pronounced sex-difference has been found for the threshold
judging the length of arc-shaped scratches with d = 0.51.
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