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Preface

This is a printed collection of the contents of the lecture “Genetic Algorithms:
Theory and Applications” which I gave first in the winter semester 1999/2000
at the Johannes Kepler University in Linz. The reader should be aware
that this manuscript is subject to further reconsideration and improvement.
Corrections, complaints, and suggestions are cordially welcome.

The sources were manifold: Chapters 1 and 2 were written originally
for these lecture notes. All examples were implemented from scratch. The
third chapter is a distillation of the books of Goldberg [13] and Hoffmann
[15] and a handwritten manuscript of the preceding lecture on genetic algo-
rithms which was given by Andreas Stöckl in 1993 at the Johannes Kepler
University. Chapters 4, 5, and 7 contain recent adaptations of previously
published material from my own master thesis and a series of lectures which
was given by Francisco Herrera and myself at the Second Summer School on
Advanced Control at the Slovak Technical University, Bratislava, in summer
1997 [4]. Chapter 6 was written originally, however, strongly influenced by
A. Geyer-Schulz’s works and H. Hörner’s paper on his C++ GP kernel [18].

I would like to thank all the students attending the first GA lecture in
Winter 1999/2000, for remaining loyal throughout the whole term and for
contributing much to these lecture notes with their vivid, interesting, and
stimulating questions, objections, and discussions.

Last but not least, I want to express my sincere gratitude to Sabine
Lumpi and Susanne Saminger for support in organizational matters, and Pe-
ter Bauer for proof-reading.

Ulrich Bodenhofer, February 2000.
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Chapter 1

Basic Ideas and Concepts

Growing specialization and diversification have brought a host
of monographs and textbooks on increasingly specialized topics.
However, the “tree” of knowledge of mathematics and related
fields does not grow only by putting forth new branches. It also
happens, quite often in fact, that branches which were thought to
be completely disparate are suddenly seen to be related.

Michiel Hazewinkel

1.1 Introduction

Applying mathematics to a problem of the real world mostly means, at first,
modeling the problem mathematically, maybe with hard restrictions, ide-
alizations, or simplifications, then solving the mathematical problem, and
finally drawing conclusions about the real problem based on the solutions of
the mathematical problem.

Since about 60 years, a shift of paradigms has taken place—in some sense,
the opposite way has come into fashion. The point is that the world has done
well even in times when nothing about mathematical modeling was known.
More specifically, there is an enormous number of highly sophisticated pro-
cesses and mechanisms in our world which have always attracted the interest
of researchers due to their admirable perfection. To imitate such principles
mathematically and to use them for solving a broader class of problems has
turned out to be extremely helpful in various disciplines. Just briefly, let us
mention the following three examples:

9



10 1. Basic Ideas and Concepts

Artificial Neural Networks (ANNs): Simple models of nerve cells (neu-
rons) and the way they interact; can be used for function approxima-
tion, machine learning, pattern recognition, etc. (e.g. [26, 32]).

Fuzzy Control: Humans are often able to control processes for which no
analytic model is available. Such knowledge can be modeled mathemat-
ically by means of linguistic control rules and fuzzy sets (e.g. [21, 31]).

Simulated Annealing: Robust probabilistic optimization method mimick-
ing the solidification of a crystal under slowly decreasing temperature;
applicable to a wide class of problems (e.g. [23, 30]).

The fourth class of such methods will be the main object of study through-
out this whole series of lectures—Genetic Algorithms (GAs).

The world as we see it today, with its variety of different creatures, its
individuals highly adapted to their environment, with its ecological balance
(under the optimistic assumption that there is still one), is the product of a
three billion years experiment we call evolution, a process based on sexual
and asexual reproduction, natural selection, mutation, and so on [9]. If we
look inside, the complexity and adaptability of today’s creatures has been
achieved by refining and combining the genetic material over a long period
of time.

Generally speaking, genetic algorithms are simulations of evolution, of
what kind ever. In most cases, however, genetic algorithms are nothing else
than probabilistic optimization methods which are based on the principles of
evolution.

This idea appears first in 1967 in J. D. Bagley’s thesis “The Behavior of
Adaptive Systems Which Employ Genetic and Correlative Algorithms” [1].
The theory and applicability was then strongly influenced by J. H. Holland,
who can be considered as the pioneer of genetic algorithms [16, 17]. Since
then, this field has witnessed a tremendous development. The purpose of
this lecture is to give a comprehensive overview of this class of methods and
their applications in optimization, program induction, and machine learning.

1.2 Definitions and Terminology

As a first approach, let us restrict to the view that genetic algorithms are
optimization methods. In general, optimization problems are given in the
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following form:

Find an x0 ∈ X such that f is maximal in x0, where f : X → R
is an arbitrary real-valued function, i.e. f(x0) = max

x∈X
f(x). (1.1)

In practice, it is sometimes almost impossible to obtain global solutions in
the strict sense of (1.1). Depending on the actual problem, it can be sufficient
to have a local maximum or to be at least close to a local or global maximum.
So, let us assume in the following that we are interested in values x where
the objective function f is “as high as possible”.

The search space X can be seen in direct analogy to the set of competing
individuals in the real world, where f is the function which assigns a value
of “fitness” to each individual (this is, of course, a serious simplification).

In the real world, reproduction and adaptation is carried out on the level
of genetic information. Consequently, GAs do not operate on the values in the
search space X, but on some coded versions of them (strings for simplicity).

1.1 Definition. Assume S to be a set of strings (in non-trivial cases with
some underlying grammar). Let X be the search space of an optimization
problem as above, then a function

c : X −→ S
x 7−→ c(x)

is called coding function. Conversely, a function

c̃ : S −→ X
s 7−→ c̃(s)

is called decoding function.

In practice, coding and decoding functions, which have to be specified
depending on the needs of the actual problem, are not necessarily bijective.
However, it is in most of the cases useful to work with injective decoding
functions (we will see examples soon). Moreover, the following equality is
often supposed to be satisfied:

(c ◦ c̃) ≡ idS (1.2)

Finally, we can write down the general formulation of the encoded maxi-
mization problem:

Find an s0 ∈ S such that f̃ = f ◦ c̃ is as large as possible

The following table gives a list of different expressions, which are common
in genetics, along with their equivalent in the framework of GAs:
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Natural Evolution Genetic Algorithm

genotype coded string
phenotype uncoded point
chromosome string
gene string position
allele value at a certain position
fitness objective function value

After this preparatory work, we can write down the basic structure of a
genetic algorithm.

1.2 Algorithm.

t := 0;
Compute initial population B0;

WHILE stopping condition not fulfilled DO
BEGIN

select individuals for reproduction;
create offsprings by crossing individuals;
eventually mutate some individuals;
compute new generation

END

As obvious from the above algorithm, the transition from one generation
to the next consists of four basic components:

Selection: Mechanism for selecting individuals (strings) for reproduction
according to their fitness (objective function value).

Crossover: Method of merging the genetic information of two individuals; if
the coding is chosen properly, two good parents produce good children.

Mutation: In real evolution, the genetic material can by changed randomly
by erroneous reproduction or other deformations of genes, e.g. by
gamma radiation. In genetic algorithms, mutation can be realized as
a random deformation of the strings with a certain probability. The
positive effect is preservation of genetic diversity and, as an effect, that
local maxima can be avoided.

Sampling: Procedure which computes a new generation from the previous
one and its offsprings.
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Compared with traditional continuous optimization methods, such as
Newton or gradient descent methods, we can state the following significant
differences:

1. GAs manipulate coded versions of the problem parameters instead of
the parameters themselves, i.e. the search space is S instead of X itself.

2. While almost all conventional methods search from a single point, GAs
always operate on a whole population of points (strings). This con-
tributes much to the robustness of genetic algorithms. It improves the
chance of reaching the global optimum and, vice versa, reduces the risk
of becoming trapped in a local stationary point.

3. Normal genetic algorithms do not use any auxiliary information about
the objective function value such as derivatives. Therefore, they can
be applied to any kind of continuous or discrete optimization problem.
The only thing to be done is to specify a meaningful decoding function.

4. GAs use probabilistic transition operators while conventional methods
for continuous optimization apply deterministic transition operators.
More specifically, the way a new generation is computed from the actual
one has some random components (we will see later by the help of some
examples what these random components are like).
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Chapter 2

A Simple Class of GAs

Once upon a time a fire broke out in a hotel, where just then a
scientific conference was held. It was night and all guests were
sound asleep. As it happened, the conference was attended by
researchers from a variety of disciplines. The first to be awak-
ened by the smoke was a mathematician. His first reaction was
to run immediately to the bathroom, where, seeing that there was
still water running from the tap, he exclaimed: “There is a so-
lution!”. At the same time, however, the physicist went to see
the fire, took a good look and went back to his room to get an
amount of water, which would be just sufficient to extinguish the
fire. The electronic engineer was not so choosy and started to
throw buckets and buckets of water on the fire. Finally, when the
biologist awoke, he said to himself: “The fittest will survive” and
went back to sleep.

Anecdote originally told by C. L. Liu

In this chapter, we will present a very simple but extremely important
subclass—genetic algorithms working with a fixed number of binary strings
of fixed length. For this purpose, let us assume that the strings we consider
are all from the set

S = {0, 1}n,

where n is obviously the length of the strings. The population size will be
denoted with m in the following. Therefore, the generation at time t is a list
of m strings which we will denote with

Bt = (b1,t, b2,t, . . . , bm,t).

All GAs in this chapter will obey the following structure:

15



16 2. A Simple Class of GAs

2.1 Algorithm.

t := 0;
Compute initial population B0 = (b1,0, . . . , bm,0);

WHILE stopping condition not fulfilled DO
BEGIN

FOR i := 1 TO m DO
select an individual bi,t+1 from Bt;

FOR i := 1 TO m− 1 STEP 2 DO
IF Random[0, 1] ≤ pC THEN

cross bi,t+1 with bi+1,t+1;

FOR i := 1 TO m DO
eventually mutate bi,t+1;

t := t + 1
END

Obviously, selection, crossover (done only with a probability of pC here),
and mutation are still degrees of freedom, while the sampling operation is
already specified. As it is easy to see, every selected individual is replaced by
one of its children after crossover and mutation; unselected individuals die
immediately. This is a rather common sampling operation, although other
variants are known and reasonable.

In the following, we will study the three remaining operations selection,
crossover, and mutation.

2.1 Genetic Operations on Binary Strings

2.1.1 Selection

Selection is the component which guides the algorithm to the solution by
preferring individuals with high fitness over low-fitted ones. It can be a
deterministic operation, but in most implementations it has random compo-
nents.

One variant, which is very popular nowadays (we will give a theoretical
explanation of its good properties later), is the following scheme, where the
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probability to choose a certain individual is proportional to its fitness. It can
be regarded as a random experiment with

P[bj,t is selected] =
f(bj,t)

m∑
k=1

f(bk,t)
. (2.1)

Of course, this formula only makes sense if all the fitness values are positive.
If this is not the case, a non-decreasing transformation ϕ : R → R+ must be
applied (a shift in the simplest case). Then the probabilities can be expressed
as

P[bj,t is selected] =
ϕ(f(bj,t))

m∑
k=1

ϕ(f(bk,t))
(2.2)

We can force the property (2.1) to be satisfied by applying a random
experiment which is, in some sense, a generalized roulette game. In this
roulette game, the slots are not equally wide, i.e. the different outcomes can
occur with different probabilities. Figure 2.1 gives a graphical hint how this
roulette wheel game works.

The algorithmic formulation of the selection scheme (2.1) can be written
down as follows, analogously for the case of (2.2):

2.2 Algorithm.

x := Random[0, 1];
i := 1

WHILE i < m & x <
∑i

j=1 f(bj,t)/
∑m

j=1 f(bj,t) DO
i := i + 1;

select bi,t;

For obvious reasons, this method is often called proportional selection.

2.1.2 Crossover

In sexual reproduction, as it appears in the real world, the genetic material
of the two parents is mixed when the gametes of the parents merge. Usually,
chromosomes are randomly split and merged, with the consequence that
some genes of a child come from one parent while others come from the
other parents.
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0.208

Figure 2.1: A graphical representation of roulette wheel selection, where the
number of alternatives m is 6. The numbers inside the arcs correspond to
the probabilities to which the alternative is selected.

This mechanism is called crossover. It is a very powerful tool for intro-
ducing new genetic material and maintaining genetic diversity, but with the
outstanding property that good parents also produce well-performing chil-
dren or even better ones. Several investigations have come to the conclusion
that crossover is the reason why sexually reproducing species have adapted
faster than asexually reproducing ones.

Basically, crossover is the exchange of genes between the chromosomes of
the two parents. In the simplest case, we can realize this process by cutting
two strings at a randomly chosen position and swapping the two tails. This
process, which we will call one-point crossover in the following, is visualized
in Figure 2.2.
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Figure 2.2: One-point crossover of binary strings.

2.3 Algorithm.

pos := Random{1, . . . , n− 1};

FOR i := 1 TO pos DO
BEGIN

Child1[i] := Parent1[i];
Child2[i] := Parent2[i]

END

FOR i := pos + 1 TO n DO
BEGIN

Child1[i] := Parent2[i];
Child2[i] := Parent1[i]

END

One-point crossover is a simple and often-used method for GAs which
operate on binary strings. For other problems or different codings, other
crossover methods can be useful or even necessary. We mention just a small
collection of them, for more details see [11, 13]:

N-point crossover: Instead of only one, N breaking points are chosen ran-
domly. Every second section is swapped. Among this class, two-point
crossover is particularly important

Segmented crossover: Similar to N -point crossover with the difference
that the number of breaking points can vary.
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Uniform crossover: For each position, it is decided randomly if the posi-
tions are swapped.

Shuffle crossover: First a randomly chosen permutation is applied to the
two parents, then N -point crossover is applied to the shuffled parents,
finally, the shuffled children are transformed back with the inverse per-
mutation.

2.1.3 Mutation

The last ingredient of our simple genetic algorithm is mutation—the random
deformation of the genetic information of an individual by means of radioac-
tive radiation or other environmental influences. In real reproduction, the
probability that a certain gene is mutated is almost equal for all genes. So,
it is near at hand to use the following mutation technique for a given binary
string s, where pM is the probability that a single gene is modified:

2.4 Algorithm.

FOR i := 1 TO n DO
IF Random[0, 1] < pM THEN

invert s[i];

Of course, pM should be rather low in order to avoid that the GA behaves
chaotically like a random search.

Again, similar to the case of crossover, the choice of the appropriate mu-
tation technique depends on the coding and the problem itself. We mention
a few alternatives, more details can be found in [11] and [13] again:

Inversion of single bits: With probability pM, one randomly chosen bit is
negated.

Bitwise inversion: The whole string is inverted bit by bit with prob. pM.

Random selection: With probability pM, the string is replaced by a ran-
domly chosen one.

2.1.4 Summary

If we fill in the methods described above, we can write down a universal
genetic algorithm for solving optimization problems in the space S = {0, 1}n.
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2.5 Algorithm.

t := 0;
Create initial population B0 = (b1,0, . . . , bm,0);

WHILE stopping condition not fulfilled DO
BEGIN

(∗ proportional selection ∗)

FOR i := 1 TO m DO
BEGIN

x := Random[0, 1];

k := 1;
WHILE k < m & x <

∑k
j=1 f(bj,t)/

∑m
j=1 f(bj,t) DO

k := k + 1;

bi,t+1 := bk,t

END

(∗ one-point crossover ∗)

FOR i := 1 TO m − 1 STEP 2 DO
BEGIN

IF Random[0, 1] ≤ pC THEN
BEGIN

pos := Random{1, . . . , n − 1};

FOR k := pos + 1 TO n DO
BEGIN

aux := bi,t+1[k];
bi,t+1[k] := bi+1,t+1[k];
bi+1,t+1[k] := aux

END
END

END

(∗ mutation ∗)

FOR i := 1 TO m DO
FOR k := 1 TO n DO

IF Random[0, 1] < pM THEN
invert bi,t+1[k];

t := t + 1
END

2.2 Examples

2.2.1 A Very Simple One

Consider the problem of finding the global maximum of the following func-
tion:

f1 : {0, . . . , 31} −→ R
x 7−→ x2
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Of course, the solution is obvious, but the simplicity of this problem allows
us to compute some steps by hand in order to gain some insight into the
principles behind genetic algorithms.

The first step on the checklist of things, which have to be done in order
to make a GA work, is, of course, to specify a proper string space along with
an appropriate coding and decoding scheme. In this example, it is near at
hand to consider S = {0, 1}5, where a value from {0, . . . , 31} is coded by its
binary representation. Correspondingly, a string is decoded as

c̃(s) =
4∑

i=0

s[4− i] · 2i.

Like in [13], let us assume that we use Algorithm 2.5 as it is, with a
population size of m = 4, a crossover probability pC = 1 and a mutation
probability of pM = 0.001. If we compute the initial generation randomly
with uniform distribution over {0, 1}5, we obtain the following in the first
step:

Individual String x value f(x) pselecti

No. (genotype) (phenotype) x2 fi∑
fj

1 0 1 1 0 1 13 169 0.14
2 1 1 0 0 0 24 576 0.49
3 0 1 0 0 0 8 64 0.06
4 1 0 0 1 1 19 361 0.31

One can compute easily that the sum of fitness values is 1170, where the
average is 293 and the maximum is 576. We see from the last column in
which way proportional selection favors high-fitted individuals (such as no.
2) over low-fitted ones (such as no. 3).

A random experiment could, for instance, give the result that individuals
no. 1 and no. 4 are selected for the new generation, while no. 3 dies and no.
2 is selected twice, and we obtain the second generation as follows:

Set of selected Crossover site New x f(x)
individuals (random) population value x2

0 1 1 0|1 4 0 1 1 0 0 12 144
1 1 0 0|0 4 1 1 0 0 1 25 625
1 1|0 0 0 2 1 1 0 1 1 27 729
1 0|0 1 1 2 1 0 0 0 0 16 256
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Figure 2.3: The function f2.

So, we obtain a new generation with a sum of fitness values of 1754, an
average of 439, and a maximum of 729.

We can see from this very basic example in which way selection favors
high-fitted individuals and how crossover of two parents can produce an
offspring which is even better than both of its parents. It is left to the
reader as an exercise to continue this example.

2.2.2 An Oscillating One-Dimensional Function

Now we are interested in the global maximum of the function

f2 : [−1, 1] −→ R
x 7−→ 1 + e−x2 · cos(36x).

As one can see easily from the plot in Figure 2.3, the function has a global
maximum in 0 and a lot of local maxima.

First of all, in order to work with binary strings, we have to discretize
the search space [−1, 1]. A common technique for doing so is to make a
uniform grid of 2n points, then to enumerate the grid points, and to use the
binary representation of the point index as coding. In the general form (for
an arbitrary interval [a, b]), this looks as follows:

cn,[a,b] : [a, b] −→ {0, 1}n

x 7−→ binn

(
round

(
(2n − 1) · x−a

b−a

))
,

(2.3)



24 2. A Simple Class of GAs

where binn is the function which converts a number from {0, . . . , 2n−1} to its
binary representation of length n. This operation is not bijective since infor-
mation is lost due to the rounding operation. Obviously, the corresponding
decoding function can be defined as

c̃n,[a,b] : {0, 1}n −→ [a, b]
s 7−→ a + bin−1

n (s) · b−a
2n−1

.
(2.4)

It is left as an exercise to show that the decoding function c̃n,[a,b] is injective
and that the equality (1.2) holds for the pair (cn,[a,b], c̃n,[a,b]).

Applying the above coding scheme to the interval [−1, 1] with n = 16, we
get a maximum accuracy of the solution of

1

2
· 2

216 − 1
≈ 1.52 · 10−5.

Now let us apply Algorithm 2.5 with m = 6, pC = 1, and pM = 0.005. The
first and the last generation are given as follows:

Generation 1 max. fitness 1.9836 at -0.0050
#0 0111111101010001 fitness: 1.98
#1 1101111100101011 fitness: 0.96
#2 0111111101011011 fitness: 1.98
#3 1001011000011110 fitness: 1.97
#4 1001101100101011 fitness: 1.20
#5 1100111110011110 fitness: 0.37
Average Fitness: 1.41

...

Generation 52 max. fitness 2.0000 at 0.0000
#0 0111111101111011 fitness: 1.99
#1 0111111101111011 fitness: 1.99
#2 0111111101111011 fitness: 1.99
#3 0111111111111111 fitness: 2.00
#4 0111111101111011 fitness: 1.99
#5 0111111101111011 fitness: 1.99
Average Fitness: 1.99

We see that the algorithm arrives at the global maximum after 52 gen-
erations, i.e. it suffices with at most 52 × 6 = 312 evaluations of the fitness
function, while the total size of the search space is 216 = 65536. We can draw
the conclusion—at least for this example—that the GA is definitely better
than a pure random search or an exhaustive method which stupidly scans
the whole search space.
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Figure 2.4: A surface plot of the function f3.

Just in order to get more insight into the coding/decoding scheme, let us
take the best string 0111111111111111. Its representation as integer number
is 32767. Computing the decoding function yields

−1 + 32767 · 1− (−1)

65535
= −1 + 0.9999847 = −0.0000153.

2.2.3 A Two-Dimensional Function

As next example, we study the function

f3 : [−10, 10]2 −→ R

(x, y) 7−→ 1−sin2(
√

x2+y2)

1+0.001·(x2+y2)
.

As one can see easily from the plot in Figure 2.4, the function has a global
maximum in 0 and a lot of local maxima.

Let us use the coding/decoding scheme as shown in (2.3) and (2.4) for
the two components x and y independently with n = 24, i.e. c24,[−10,10] and
c̃24,[−10,10] are used as coding and decoding functions, respectively. In order
to get a coding for the two-dimensional vector, we can use concatenation and
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splitting:

c3 : [−10, 10]2 −→ {0, 1}48

(x, y) 7−→ c24,[−10,10](x)|c24,[−10,10](y)

c̃3 : {0, 1}48 −→ [−10, 10]2

s 7−→
(
c̃24,[−10,10](s[1 : 24]), c̃24,[−10,10](s[25 : 48])

)
If we apply Algorithm 2.5 with m = 50, pC = 1, pM = 0.01, we observe
that a fairly good solution is reached after 693 generations (at most 34650
evaluations at a search space size of 2.81 · 1014):

Generation 693 max. fitness 0.9999 at (0.0098,0.0000)

#0 000000001000000001000000000000000000000010000000 fitness: 1.00

#1 000001000000011001000110000000000000000010100010 fitness: 0.00

#2 000000001000000000100000000000000000000010000000 fitness: 1.00

#3 000000001000001001000000000000000000000010000000 fitness: 0.97

#4 000000001000001011001000000000000000000010000011 fitness: 0.90

#5 000000101000000001000010000100000000000010000000 fitness: 0.00

#6 000000001000000011000000000000001000000010000011 fitness: 0.00

#7 000000001000000001100000000010000000000110000000 fitness: 0.00

#8 000000001001000001000000000000000000000000100010 fitness: 0.14

#9 000000001000000001000000000000000000000010100010 fitness: 0.78

#10 000000001000011011000000000000000000000010000000 fitness: 0.75

#11 000000001000000001000000000000000000000010100000 fitness: 0.64

#12 000000001000001000010010000000000000000010001001 fitness: 0.56

#13 000000001000001011000000000000000000000010100010 fitness: 0.78

#14 000000001000000001000001000000000000000010000000 fitness: 1.00

#15 000000001000000001100000100000000000000010000000 fitness: 0.00

#16 000000001000001010001000000000000000000010100010 fitness: 0.78

#17 000000001000011011000000000000000000000010000011 fitness: 0.70

#18 000000001000001011001000000000000000000010000011 fitness: 0.90

#19 000000001000011001000010001000010000000010000010 fitness: 0.00

#20 000000001000000001000000000001000000000010100010 fitness: 0.00

#21 000000001000011001100000000000000000010010000000 fitness: 0.00

#22 000000001000000101100000000000000000010010000000 fitness: 0.00

#23 000000001000100001000000000000000000000010000111 fitness: 0.44

#24 000000001000000011000000000000000000000000000000 fitness: 0.64

#25 000000001000000001011000000000010000000010100010 fitness: 0.00

#26 000000001000000001001000000000000000000000100010 fitness: 0.23

#27 000000001000001011000010000000000000000010100010 fitness: 0.78

#28 000000001000001011100010000000000000000010101010 fitness: 0.97

#29 010000001000000011000000000000000010010010000000 fitness: 0.00

#30 000000001000001011000000000000000000000010000011 fitness: 0.90

#31 000000001000011011000000000000000000000011000011 fitness: 0.26

#32 000000001000001001100000000000000000000010000000 fitness: 0.97

#33 000000001001001011000110000000000000000011110100 fitness: 0.87

#34 000000001000000000000000000000000000000010100010 fitness: 0.78

#35 000000001000001011001000000000000000000010000010 fitness: 0.93

#36 000000001000011011000000000000000010000010000001 fitness: 0.00

#37 000000001000001011000000000010000000000010100010 fitness: 0.00

#38 000000001000001011000010010000000000000010000000 fitness: 0.00

#39 000000001000000001000000000001000000000010100010 fitness: 0.00

#40 000000001000001001000110000000000000000011010100 fitness: 0.88

#41 000000001010000001000000000000000000000010000000 fitness: 0.66

#42 000000001000001001100110000000000000000011010100 fitness: 0.88

#43 000000000000000000000000000000000000000010000011 fitness: 0.64

#44 000000001000001011001000000000000000000010100000 fitness: 0.65

#45 000000001000001011000110000000000000000011110100 fitness: 0.81

#46 000000000000000000000000000000000000000010000000 fitness: 0.64

#47 000000001000010001000110000000000000000010000000 fitness: 0.89

#48 000000001000001011000000000000000000000010100011 fitness: 0.84

#49 000000001000000111000000000000000000000010000001 fitness: 0.98

Average Fitness: 0.53

Again, we learn from this example that the GA is here for sure much
faster than an exhaustive algorithm or a pure random search. The question
arises, since f3 is perfectly smooth, which result we obtain if we apply a con-
ventional method with random selection of the initial value. In this example,
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the expectation is obvious: The global maximum (0, 0) is surrounded by a
ring of minima at a radius of π

2
. If we apply, for instance, BFGS (Broy-

den Fletcher Goldfarb Shanno—a very efficient Quasi-Newton method for
continuous unconstrained function optimization [7]) with line search, it is
likely that convergence to the global maximum is achieved if the initial value
is inside that ring, but only in this case. If we take the initial value from
[−10, 10]2 randomly with uniform distribution, the probability to get a value
from the appropriate neighborhood of the global maximum is(

π
2

)2 · π
10 · 10

=
π3

400
= 0.0775.

The expected number of trials until we get an initial value is, therefore,
1

0.0775
≈ 13. In a test implementation, it took 15 trials (random initial values)

until the correct global optimum was found by the BFGS method with line
search. The total time for all these computations was 5 milliseconds on an
SGI O2 (MIPS R5000/180SC). The genetic algorithm, as above, took 1.5
seconds until it found the global optimum with comparable accuracy.

This example shows that GAs are not necessarily fast. Moreover, they
are in many cases much slower than conventional methods which involve
derivatives. The next example, however, will drastically show us that there
are even smooth functions which can be hard for conventional optimization
techniques.

2.2.4 Global Smoothness versus Local Perturbations

Consider the function

f4 : [−2, 2] −→ R
x 7−→ e−x2

+ 0.01 cos(200x).

As easy to see from Figure 2.5, this function has a clear bell-like shape
with small but highly oscillating perturbations. In the first derivative, these
oscillations are drastically emphasized (see Figure 2.5):

f ′
4(x) = −2xe−x2 − 2 sin(200x)

We applied the simple GA as in Algorithm 2.5 with n = 16, i.e. the
pair c̃16,[−2,2]/c̃16,[−2,2] as coding/decoding scheme, m = 10, pC = 1, and
pM = 0.005. The result was that the global maximum at x = 0 was found af-
ter 9 generations (i.e. at most 90 evaluations of the fitness function) and
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Figure 2.5: The function f4 (top) and its derivative (bottom).

5 milliseconds computation time, respectively (on the same computer as
above).

In order to repeat the above comparison, BFGS with line search and
random selection of the initial value was applied to f4 as well. The global
optimum was found after 30 trials (initial values) with perfect accuracy, but
9 milliseconds of computation time.

We see that, depending on the structure of the objective function, a GA
can even outperform an acknowledged conventional method which makes use
of derivatives.

2.2.5 Discussion

Finally, let us summarize some conclusions about the four examples above:
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Algorithm 2.5 is very universal. More or less, the same algorithm has
been applied to four fundamentally different optimization tasks.

As seen in 2.2.4, GAs can even be faster in finding global maxima than
conventional methods, in particular when derivatives provide misleading in-
formation. We should not forget, however, that, in most cases where con-
ventional methods can be applied, GAs are much slower because they do
not take auxiliary information like derivatives into account. In these opti-
mization problems, there is no need to apply a GA which gives less accurate
solutions after much longer computation time. The enormous potential of
GAs lies elsewhere—in optimization of non-differentiable or even discontin-
uous functions, discrete optimization, and program induction.
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Chapter 3

Analysis

Although the belief that an organ so perfect as the eye could have
been formed by natural selection, is enough to stagger any one;
yet in the case of any organ, if we know of a long series of gra-
dations in complexity, each good for its possessor, then, under
changing conditions of life, there is no logical impossibility in the
acquirement of any conceivable degree of perfection through nat-
ural selection.

Charles R. Darwin

In this remark, Darwin, in some sense, tries to turn around the burden of
proof for his theory simply by saying that there is no evidence against it.
This chapter is intended to give an answer to the question why genetic algo-
rithms work—in a way which is philosophically more correct than Darwin’s.
However, we will see that, as in Darwin’s theory of evolution, the complexity
of the mechanisms makes mathematical analysis difficult and complicated.

For conventional deterministic optimization methods, such as gradient
methods, Newton- or Quasi-Newton methods, etc., it is rather usual to have
results which guarantee that the sequence of iterations converges to a local
optimum with a certain speed or order. For any probabilistic optimization
method, theorems of this kind cannot be formulated, because the behavior of
the algorithm is not determinable in general. Statements about the conver-
gence of probabilistic optimization methods can only give information about
the expected or average behavior. In the case of genetic algorithms, there
are a few circumstances which make it even more difficult to investigate their
convergence behavior:

31
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• Since a single transition from one generation to the next is a combina-
tion of usually three probabilistic operators (selection, crossover, and
mutation), the inner structure of a genetic algorithm is rather compli-
cated.

• For each of the involved probabilistic operators, many different variants
have been proposed, thus it is not possible to give general convergence
results due to the fact that the choice of the operators influences the
convergence fundamentally.

In the following, we will not be able to give “hard” convergence theorems,
but only a summary of results giving a clue why genetic algorithms work for
many problems but not necessarily for all problems. For simplicity, we will
restrict to algorithms of type 2.1, i.e. GAs with a fixed number m of binary
strings of fixed length n. Unless stated otherwise, no specific assumptions
about selection, crossover, or mutation will be made.

Let us briefly reconsider the example in 2.2.1. We saw that the transition
from the first to the second generation is given as follows:

Gen. #1 f(x)
0 1 1 0 1 169
1 1 0 0 0 576
0 1 0 0 0 64
1 0 0 1 1 361

=⇒

Gen. #2 f(x)
0 1 1 0 0 144
1 1 0 0 1 625
1 1 0 1 1 729
1 0 0 0 0 256

It is easy to see that it is advantageous to have a 1 in the first position. In
fact, the number of strings having this property increased from 2 in the first to
3 in the second generation. The question arises whether this is a coincidence
or simply a clue to the basic principle why GAs work. The answer will be
that the latter is the case. In order to investigate these aspects formally, let
us make the following definition.

3.1 Definition. A string H = (h1, . . . , hn) over the alphabet {0, 1, ∗} is
called a (binary) schema of length n. An hi 6= ∗ is called a specification of
H, an hi = ∗ is called wildcard.

It is not difficult to see that schemata can be considered as specific subsets
of {0, 1}n if we consider the following function which maps a schema to its
associated subset.

i : {0, 1, ∗}n −→ P({0, 1}n)
H 7−→ {S | ∀1 ≤ i ≤ n : (hi 6= ∗) ⇒ (hi = si)}
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Figure 3.1: Hypercubes of dimensions 1–4.

If we interpret binary strings of length n as hypercubes of dimension n (cf.
Figure 3.1), schemata can be interpreted as hyperplanes in these hypercubes
(see Figure 3.2 for an example with n = 3).

Before turning to the first important result, let us make some fundamental
definitions concerning schemata.

3.2 Definition.

1. A string S = (s1, . . . , sn) over the alphabet {0, 1} fulfills the schema
H = (h1, . . . , hn) if and only if it matches H is all non-wildcard posi-
tions:

∀i ∈ {j | hj 6= ∗} : si = hi

According to the discussion above, we write S ∈ H.

2. The number of specifications of a schema H is called order and denoted
as

O(H) = |{i ∈ {1, . . . , n}|hi 6= ∗}|.

3. The distance between the first and the last specification

δ(H) = max{i|hi 6= ∗} −min{i|hi 6= ∗}

is called the defining length of a schema H.
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Figure 3.2: A hyperplane interpretation of schemata for n = 3.

3.1 The Schema Theorem

In this section, we will formulate and prove the fundamental result on the
behavior of genetic algorithms—the so-called Schema Theorem. Although
being completely incomparable with convergence results for conventional op-
timization methods, it still provides valuable insight into the intrinsic prin-
ciples of GAs.

Assume in the following, that we have a genetic algorithm of type 2.1
with proportional selection and an arbitrary but fixed fitness function f . Let
us make the following notations:

1. The number of individuals which fulfill H at time step t are denoted as

rH,t = |Bt ∩H| .

2. The expression f̄(t) refers to the observed average fitness at time t:

f̄(t) =
1

m

m∑
i=1

f(bi,t)

3. The term f̄(H, t) stands for the observed average fitness of schema H
in time step t:

f̄(H, t) =
1

rH,t

∑
i∈{j|bj,t∈H}

f(bi,t)
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3.3 Theorem (Schema Theorem—Holland 1975). Assuming we con-
sider a genetic algorithm of type 2.5, the following inequality holds for every
schema H:

E[rH,t+1] ≥ rH,t ·
f̄(H, t)

f̄(t)
·
(

1− pC · δ(H)

n− 1

)
· (1− pM)O(H) (3.1)

Proof. The probability that we select an individual fulfilling H is (compare
with Eq. (2.1)) ∑

i∈{j|bj,t∈H}
f(bi,t)

m∑
i=1

f(bi,t)
. (3.2)

This probability does not change throughout the execution of the selection
loop. Moreover, every of the m individuals is selected completely indepen-
dently from the others. Hence, the number of selected individuals, which
fulfill H, is binomially distributed with sample amount m and the proba-
bility in (3.2). We obtain, therefore, that the expected number of selected
individuals fulfilling H is

m ·

∑
i∈{j|bj,t∈H}

f(bi,t)

m∑
i=1

f(bi,t)
= m · rH,t

rH,t

·

∑
i∈{j|bj,t∈H}

f(bi,t)

m∑
i=1

f(bi,t)

= rH,t ·

∑
i∈{j|bj,t∈H}

f(bi,t)

rH,t

m∑
i=1

f(bi,t)

m

= rH,t ·
f̄(H, t)

f̄(t)

If two individuals are crossed, which both fulfill H, the two offsprings again
fulfill H. The number of strings fulfilling H can only decrease if one string,
which fulfills H, is crossed with a string which does not fulfill H, but, ob-
viously, only in the case that the cross site is chosen somewhere in between
the specifications of H. The probability that the cross site is chosen within
the defining length of H is

δ(H)

n− 1
.

Hence the survival probability pS of H, i.e. the probability that a string
fulfilling H produces an offspring also fulfilling H, can be estimated as follows
(crossover is only done with probability pC):

pS ≥ 1− pC · δ(H)

n− 1
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Selection and crossover are carried out independently, so we may compute
the expected number of strings fulfilling H after crossover simply as

f̄(H, t)

f̄(t)
· rH,t · pS ≥

f̄(H, t)

f̄(t)
· rH,t ·

(
1− pC · δ(H)

n− 1

)
.

After crossover, the number of strings fulfilling H can only decrease if a string
fulfilling H is altered by mutation at a specification of H. The probability
that all specifications of H remain untouched by mutation is obviously

(1− pM)O(H).

Applying the same argument like above, Equation (3.1) follows.

The arguments in the proof of the Schema Theorem can be applied anal-
ogously to many other crossover and mutation operations.

3.4 Corollary. For a genetic algorithm of type 2.1 with roulette wheel selec-
tion, the inequality holds

E[rH,t+1] ≥
f̄(H, t)

f̄(t)
· rH,t · PC(H) · PM(H) (3.3)

for any schema H, where PC(H) is a constant only depending on the schema
H and the crossover method and PM(H) is a constant which solely depends
on H and the involved mutation operator. For the variants discussed in 2.1.2
and 2.1.3, we can give the following estimates:

PC(H) = 1− pC · δ(H)
n−1

one-point crossing over

PC(H) = 1− pC ·
(
1−

(
1
2

)O(H)
)

uniform crossing over

PC(H) = 1− pC any other crossing over method

PM(H) = (1− pM)O(H) bitwise mutation

PM(H) = 1− pM · O(H)
n

inversion of a single bit
PM(H) = 1− pM bitwise inversion

PM(H) = 1− pM · |H|
2n random selection

Even the inattentive reader must have observed that the Schema Theorem
is somehow different from convergence results for conventional optimization
methods. It seems that this result raises more questions than it is ever able
to answer. At least one insight is more or less obvious: Schemata with above-
average fitness and short defining length—let us put aside the generalizations
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made in Corollary 3.4 for our following studies—tend to produce more off-
springs than others. For brevity, let us call such schemata building blocks. It
will become clear in a moment why this term is appropriate. If we assume
that the quotient

f̄(H, t)

f̄(t)

is approximately stationary, i.e. independent of time and the actual genera-
tions, we immediately see that the number of strings, which belong to above-
average schemata with short defining lengths, grows exponentially (like a
geometric sequence).

This discovery poses the question whether it is a wise strategy to let
above-average schemata receive an exponentially increasing number of trials
and, if the answer is yes, why this is the case. In 3.1.1, we will try to shed
more light on this problem.

There is one other fundamental question we have yet not touched at all:
Undoubtedly, GAs operate on binary strings, but not on schemata. The
Schema Theorem, more or less, provides an observation of all schemata,
which all grow and decay according to their observed average fitness values
in parallel. What is actually the interpretation of this behavior and why is
this a good thing to do? Subsection 3.1.2 is devoted to this topic.

Finally, one might ask where the crucial role of schemata with above-
average fitness and short defining length comes from and what the influence of
the fitness function and the coding scheme is. We will attack these problems
in 3.2.

3.1.1 The Optimal Allocation of Trials

The Schema Theorem has provided the insight that building blocks receive
exponentially increasing trials in future generations. The question remains,
however, why this could be a good strategy. This leads to an important
and well-analyzed problem from statistical decision theory—the two-armed
bandit problem and its generalization, the k-armed bandit problem. Although
this seems like a detour from our main concern, we shall soon understand
the connection to genetic algorithms.

Suppose we have a gambling machine with two slots for coins and two
arms. The gambler can deposit the coin either into the left or the right slot.
After pulling the corresponding arm, either a reward is payed or the coin
is lost. For mathematical simplicity, we just work with outcomes, i.e. the
difference between the reward (which can be zero) and the value of the coin.
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Let us assume that the left arm produces an outcome with mean value µ1

and a variance σ2
1 while the right arm produces an outcome with mean value

µ2 and variance σ2
2. Without loss of generality, although the gambler does

not know this, assume that µ1 ≥ µ2.

The question arises which arm should be played. Since we do not know
beforehand which arm is associated with the higher outcome, we are faced
with an interesting dilemma. Not only must me make a sequence of decisions
which arm to play, we have to collect, at the same time, information about
which is the better arm. This trade-off between exploration of knowledge
and its exploitation is the key issue in this problem and, as turns out later,
in genetic algorithms, too.

A simple approach to this problem is to separate exploration from ex-
ploitation. More specifically, we could perform a single experiment at the
beginning and thereafter make an irreversible decision that depends on the
results of the experiment. Suppose we have N coins. If we first allocate an
equal number n (where 2n ≤ N) of trials to both arms, we could allocate
the remaining N − 2n trials to the observed better arm. Assuming we know
all involved parameters [13], the expected loss is given as

L(N, n) = (µ1 − µ2) ·
(
(N − n)q(n) + n(1− q(n))

)
where q(n) is the probability that the worst arm is the observed best arm
after the 2n experimental trials. The underlying idea is obvious: In case that
we observe that the worse arm is the best, which happens with probability
q(n), the total number of trials allocated to the right arm is N −n. The loss
is, therefore, (µ1−µ2) · (N −n). In the reverse case that we actually observe
that the best arm is the best, which happens with probability 1 − q(n),
the loss is only what we get less because we played the worse arm n times,
i.e. (µ1 − µ2) · n. Taking the central limit theorem into account, we can
approximate q(n) with the tail of a normal distribution:

q(n) ≈ 1√
2π

· e−c2/2

c
, where c =

µ1 − µ2√
σ2

1 + σ2
2

·
√

n

Now we have to specify a reasonable experiment size n. Obviously, if we
choose n = 1, the obtained information is potentially unreliable. If we choose,
however, n = N

2
there are no trials left to make use of the information gained

through the experimental phase. What we see is again the trade-off between
exploitation with almost no exploration (n = 1) and exploration without
exploitation (n = N

2
). It does not take a Nobel price winner to see that

the optimal way is somewhere in the middle. Holland [16] has studied this
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problem is very detail. He came to the conclusion that the optimal strategy
is given by the following equation:

n∗ ≈ b2 ln

(
N2

8πb4 ln N2

)
, where b =

σ1

µ1 − µ2

.

Making a few transformations, we obtain that

N − n∗ ≈
√

8πb4 ln N2 · en∗/2b2 ,

i.e. the optimal strategy is to allocate slightly more than an exponentially
increasing number of trials to the observed best arm. Although no gam-
bler is able to apply this strategy in practice, because it requires knowledge
of the mean values µ1 and µ2, we still have found an important bound of
performance a decision strategy should try to approach.

A genetic algorithm, although the direct connection is not yet fully clear,
actually comes close to this ideal, giving at least an exponentially increasing
number trials to the observed best building blocks. However, one may still
wonder how the two-armed bandit problem and GAs are related. Let us
consider an arbitrary string position. Then there are two schemata of order
one which have their only specification in this position. According to the
Schema Theorem, the GA implicitly decides between these two schemata,
where only incomplete data are available (observed average fitness values).
In this sense, a GA solves a lot of two-armed problems in parallel.

The Schema Theorem, however, is not restricted to schemata with an
order of 1. Looking at competing schemata (different schemata which are
specified in the same positions), we observe that a GA is solving an enor-
mous number of k-armed bandit problems in parallel. The k-armed bandit
problem, although much more complicated, is solved in an analogous way
[13, 16]—the observed better alternatives should receive an exponentially
increasing number of trials. This is exactly what a genetic algorithm does!

3.1.2 Implicit Parallelism

So far we have discovered two distinct, seemingly conflicting views of genetic
algorithms:

1. The algorithmic view that GAs operate on strings.

2. The schema-based interpretation.
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So, we may ask what a GA really processes, strings or schemata? The answer
is surprising: Both. Nowadays, the common interpretation is that a GA
processes an enormous amount of schemata implicitly. This is accomplished
by exploiting the currently available, incomplete information about these
schemata continuously, while trying to explore more information about them
and other, possibly better schemata.

This remarkable property is commonly called the implicit parallelism of
genetic algorithms.

A simple GA as presented in Chapter 2 processes only m structures in
one time step, without any memory or bookkeeping about the previous gen-
erations. We will now try to get a feeling how many schemata a GA actually
processes.

Obviously, there are 3n schemata of length n. A single binary string fulfills
n schemata of order 1,

(
n
2

)
schemata of order 2, in general,

(
n
k

)
schemata of

order k. Hence, a string fulfills

n∑
k=1

(
n

k

)
= 2n

schemata. Thus, for any generation, we obtain that there are between 2n

and m · 2n schemata which have at least one representative. But how many
schemata are actually processed? Holland [16] has given an estimation of the
quantity of schemata that are taken over to the next generation. Although
the result seems somewhat clumsy, it still provides important information
about the large quantity of schemata which are inherently processed in par-
allel while, in fact, considering a relatively small quantity of strings.

3.5 Theorem. Consider a randomly generated start population of a simple
GA of type 2.5 and let ε ∈ (0, 1) be a fixed error bound. Then schemata of
length

ls < ε · (n− 1) + 1

have a probability of at least 1 − ε to survive one-point crossover (compare
with the proof of the Schema Theorem). If the population size is chosen as
m = 2ls/2, the number of schemata, which survive for the next generation, is
of order O(m3).

3.2 Building Blocks and the Coding Problem

We have already introduced the term “building block” for a schema with
high average fitness and short defining length (implying small order). Now
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it is time to explain why this notation is appropriate. We have seen in
the Schema Theorem and 3.1.1 that building blocks receive an exponentially
increasing number of trials. The considerations in 3.1.2 have demonstrated
that a lot of schemata (including building blocks) are evaluated implicitly and
in parallel. What we still miss is the link to performance, i.e. convergence.
Unfortunately, there is no complete theory which gives a clear answer, just
a hypothesis.

3.6 Building Block Hypothesis.
A genetic algorithm creates stepwise better solutions by recombining, crossing,
and mutating short, low-order, high-fitness schemata.

Goldberg [13] has found a good comparison for pointing out the main
assertion of this hypothesis:

Just as a child creates magnificent fortresses through the arrange-
ment of simple blocks of wood, so does a genetic algorithm seek
near optimal performance through the juxtaposition of short, low-
order, high-performance schemata, or building blocks.

This seems a reasonable assumption and fits well to the Schema Theorem.
The question is now if and when it holds. We first consider an affine linear
fitness function

f(s) = a +
n∑

i=1

ci · s[i],

i.e. the fitness is computed as a linear combination of all genes. It is easy to
see that the optimal value can be determined for every gene independently
(only depending on the sign of the scaling factors ci).

Conversely, let us consider a needle-in-haystack problem as the other
extreme:

f(x) =

{
1 if x = x0

0 otherwise

Obviously, there is a single string x0 which is the optimum, but all other
strings have equal fitness values. In this case, certain values on single posi-
tions (schemata) do not provide any information for guiding an optimization
algorithm to the global optimum.

In the linear case, the building block hypothesis seems justified. For
the second function, however, it cannot be true, since there is absolutely no
information available which could guide a GA to the global solution through
partial, sub-optimal solutions. In other words, the more the positions can be
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judged independently, the easier it is for a GA. On the other hand, the more
positions are coupled, the more difficult it is for a GA (and for any other
optimization method).

Biologists have come up with a special term for this kind of nonlinearity—
epistasis. Empirical studies have shown that GAs are appropriate for prob-
lems with medium epistasis. While almost linear problems (i.e. with low
epistasis) can be solved much more efficiently with conventional methods,
highly epistatic problems cannot be solved efficiently at all [15].

We will now come to a very important question which is strongly related
to epistasis: Do good parents always produce children of comparable or even
better fitness (the building block hypothesis implicitly relies on this)? In
natural evolution, this is almost always true. For genetic algorithms, this is
not so easy to guarantee. The disillusioning fact is that the user has to take
care of an appropriate coding in order to make this fundamental property
hold.

In order to get a feeling for optimization tasks which could foul a GA,
we will now try to construct a very simple misleading example. Apparently,
for n = 1, no problems can occur, the two-bit problem n = 2 is the first.
Without loss of generality, assume that 11 is the global maximum. Next we
introduce the element of deception necessary to make this a tough problem
for a simple GA. To do this, we want a problem where one or both of the
suboptimal order-1 schemata are better than the optimal order-1 schemata.
Mathematically, we want one or both of the following conditions to be ful-
filled:

f(0*) > f(1*), (3.4)

f(*0) > f(*1), (3.5)

i.e.

f(00) + f(01)

2
>

f(10) + f(11)

2
, (3.6)

f(00) + f(10)

2
>

f(01) + f(11)

2
. (3.7)

Both expressions cannot hold simultaneously, since this would contradict to
the maximality of 11. Without any loss of generality, we choose the first
condition for our further considerations.

In order to put the problem into closer perspective, we normalize all
fitness values with respect to the complement of the global optimum:

r =
f(11)

f(00)
c =

f(01)

f(00)
c′ =

f(10)

f(00)
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Figure 3.3: Minimal deceptive problems of type I (left) and type II (right).

The maximality condition implies:

r > c r > 1 r > c′

The deception conditions (3.4) and (3.6), respectively, read as follows:

r < 1 + c− c′

From these conditions, we can conclude the following facts:

c′ < 1 c′ < c

We see that there are two possible types of minimal deceptive two-bit prob-
lems based on (3.4):

Type I: f(01) > f(00) (c > 1)
Type II: f(01) ≤ f(00) (c ≤ 1)

Figure 3.3 shows sketches of these two fundamental types of deceptive prob-
lems. It is easy to see that both fitness functions are nonlinear. In this sense,
epistasis is again the bad property behind the deception in these problems.

3.2.1 Example: The Traveling Salesman Problem

We have already mentioned that it is essential for a genetic algorithm that
good individuals produce comparably good or even better offsprings. We
will now study a non-trivial example which is well-known in logistics—the
traveling salesman problem (TSP). Assume we are given a finite set of ver-
tices/cities {v1, . . . , vN}. For every pair of cities (vi, vj), the distance Di,j is
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known (i.e. we have a symmetric K × K distance matrix). What we want
to find is a permutation (p1, . . . , pN) such that the total way—the sum of
distances—is minimal:

f(p) =
N−1∑
i=1

Dpi,pi+1
+ DpN ,p1

This problem appears in route planning, VLSI design, etc.

For solving the TSP with a genetic algorithm, we need a coding, a
crossover method, and a mutation method. All these three components
should work together such the building block hypothesis is satisfiable.

First of all, it seems promising to encode a permutation as a string of
integer numbers where entry no. i refers to the i-th city which is visited. Since
every number between 1 and K may only occur exactly once—otherwise we
do not have a complete tour—the conventional one-point crossover method
is not inappropriate like all other methods we have considered. If we put
aside mutation for a moment, the key problem remains how to define an
appropriate crossover operation for the TSP.

Partially Mapped Crossover

Partially mapped crossover (PMX) aims at keeping as many positions from
the parents as possible. To achieve this goal, a substring is swapped like
in two-point crossover and the values are kept in all other non-conflicting
positions. The conflicting positions are replaced by the values which were
swapped to the other offspring. An example:

p1 = (1 2 3 4 5 6 7 8 9)

p2 = (4 5 2 1 8 7 6 9 3)

Assume that positions 4–7 are selected for swapping. Then the two offsprings
are given as follows if we omit the conflicting positions:

o1 = (* 2 3|1 8 7 6|* 9)

o2 = (* * 2|4 5 6 7|9 3)

Now we take the conflicting positions and fill in what was swapped to the
other offspring. For instance, 1 and 4 were swapped. Therefore, we have to
replace the 1 in the first position of o1 by 4, and so on:

o1 = (4 2 3 1 8 7 6 5 9)

o2 = (1 8 2 4 5 6 7 9 3)
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Order Crossover

Order crossover (OX) relies on the idea that the order of cities is more im-
portant than their absolute positions in the strings. Like PMX, it swaps
two aligned substrings. The computation of the remaining substrings of the
offsprings, however, is done in a different way. In order to illustrate this
rather simple idea, let us consider the same example (p1, p2) as above. Sim-
ply swapping the two substrings and omitting all other positions, we obtain
the following:

o1 = (* * *|1 8 7 6|* *)

o2 = (* * *|4 5 6 7|* *)

For computing the open positions of o2, let us write down the positions in
p1, but starting from the position after the second crossover site:

9 3 4 5 2 1 8 7 6

If we omit all those values which are already in the offspring after the swap-
ping operation (4, 5, 6, and 7), we end up in the following shortened list:

9 3 2 1 8

Now we insert this list into o2 starting after the second crossover site and we
obtain

o2 = (2 1 8 4 5 6 7 9 3).

Applying the same technique to o1 produces the following result:

o1 = (3 4 5 1 8 7 6 9 2).

Cycle Crossover

PMX and OX have in common that they usually introduce alleles outside the
crossover sites which have not been present in either parent. For instance,
the 3 in the first position of o1 in the OX example above neither appears in
p1 nor in p2. Cycle crossover (CX) tries to overcome this problem—the goal
is to guarantee that every string position in any offspring comes from one of
the two parents. We consider the following example:

p1 = (1 2 3 4 5 6 7 8 9)

p2 = (4 1 2 8 7 6 9 3 5)
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We start from the first position of o1:

o1 = (1 * * * * * * * *)

o2 = (* * * * * * * * *)

Then o2 may only have a 4 in the first position, because we do not want new
values to be introduced there:

o1 = (1 * * * * * * * *)

o2 = (4 * * * * * * * *)

Since the 4 is already fixed for o2 now, we have to keep it in the same position
for o1 in order to guarantee that no new positions for the 4 are introduced.
We have to keep the 8 in the fourth position of o2 automatically for the same
reason:

o1 = (1 * * 4 * * * * *)

o2 = (4 * * 8 * * * * *)

This process must be repeated until we end up in a value which have previ-
ously be considered, i.e. we have completed a cycle:

o1 = (1 2 3 4 * * * 8 *)

o2 = (4 1 2 8 * * * 3 *)

For the second cycle, we can start with a value from p2 and insert it into o1:

o1 = (1 2 3 4 7 * * 8 *)

o2 = (4 1 2 8 5 * * 3 *)

After the same tedious computations, we end up with the following:

o1 = (1 2 3 4 7 * 9 8 5)

o2 = (4 1 2 8 5 * 7 3 9)

The last cycle is a trivial one (6–6) and the final offsprings are given as
follows:

o1 = (1 2 3 4 7 6 9 8 5)

o2 = (4 1 2 8 5 6 7 3 9)

In case that the two parents form one single cycle, no crossover can take
place.

It is worth to mention that empirical studies have shown that OX gives
11% better results and PMX and 15 % better results than CX. In general,
the performance of all three methods is rather poor.
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A Coding with Reference List

Now we discuss an approach which modifies the coding scheme such that
all conventional crossover methods are applicable. It works as follows: A
reference list is initialized with {1, . . . , N}. Starting from the first position,
we take the index of the actual element in the list which is then removed
from the list. An example:

p = (1 2 4 3 8 5 9 6 7)

The first element is 1 and its position in the reference list {1, . . . , 9} is 1.
Hence,

p̃ = (1 * * * * * * * *).

The next entry is 2 and its position in the remaining reference list {2, . . . , 9}
is 1 and we can go further:

p̃ = (1 1 * * * * * * *).

The third allele is 4 and its position in the remaining reference list {3, . . . , 9}
is 2 and we obtain:

p̃ = (1 1 2 * * * * * *).

It is left to the reader as an exercise to continue with this example. He/she
will come to the conclusion that

p̃ = (1 1 2 1 4 1 3 1 1).

The attentive reader might have guessed that a string in this coding is a valid
permutation if and only if the following holds for all 1 ≤ i ≤ N :

1 ≤ p̃i ≤ N − i + 1

Since this criterion applies only to single string positions, completely inde-
pendently from other positions, it can never be violated by any crossover
method which we have discussed for binary strings. This is, without any
doubt, a good property. The next example, however, drastically shows that
one-point crossover produces more or less random values behind the crossover
site:

p̃1 = (1 1 2 1|4 1 3 1 1) p1 = (1 2 4 3 8 5 9 6 7)

p̃2 = (5 1 5 5|5 3 3 2 1) p2 = (5 1 7 8 9 6 4 3 2)

õ1 = (1 1 2 1|5 3 3 2 1) o1 = (1 2 4 3 9 8 7 6 5)

õ2 = (5 1 5 5|4 1 3 1 1) o2 = (5 1 7 8 6 2 9 4 3)
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Edge Recombination

Absolute string positions do not have any meaning at all—we may start a
given round-trip at a different city and still observe the same total length.
The order, as in OX, already has a greater importance. However, it is not
order itself that makes a trip efficient, it is the set of edges between cities,
where it is obviously not important in which direction we pass such an edge.
In this sense, the real building blocks in the TS problem are hidden in the
connections between cities. A method called Edge Recombination (ER) rests
upon this discovery. The basic idea is to cache information about all edges
and to compute an offspring from this edge list.

We will study the basic principle with the help of a simple example:

p1 = (1 2 3 4 5 6 7 8 9)

p2 = (4 1 2 8 7 6 9 3 5)

The first thing is to compute all vertices which occur in the two parents.
What we obtain is a list of 2–4 cities with which every city is connected:

1 → 2, 4, 9

2 → 1, 3, 8

3 → 2, 4, 5, 9

4 → 1, 3, 5

5 → 3, 4, 6

6 → 5, 7, 9

7 → 6, 8

8 → 2, 7, 9

9 → 1, 3, 6, 8

We start from the city with the lowest number of neighbors (7 in this exam-
ple), put it into the offspring, and erase it from all adjacency lists. From 7,
we have two possibilities to move next—6 and 8. We always take the one
with the smaller number of neighbors. If these numbers are equal, random
selection takes place. This procedure must be repeated until the permuta-
tion is ready or a conflict occurs (no edges left, but permutation not yet
complete). Empirical studies have shown that the probability not to run
into a conflict is about 98%. This probability is high enough to have a good
chance when trying it a second time. Continuing the example, the following
offspring could be obtained:

o = (7 6 5 4 1 9 8 2 3)
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There are a few variants for improving the convergence of a GA with ER.
First of all, it seems reasonable to mark all edges which occur in both parents
and to favor them in the selection of the next neighbor. Moreover, it could
be helpful to incorporate information about the lengths of single edges.

3.3 Concluding Remarks

In this chapter, we have collected several important results which provide
valuable insight into the intrinsic principles of genetic algorithms. These
insights were not given as hard mathematical results, but only as a loose
collection of interpretations. In order to bring a structure into this mess, let
us summarize our achievements:

1. Short, low-order schemata with above-average fitness (building blocks)
receive an exponentially increasing number of trials. By the help of a
detour to the two-armed bandit problem, we have seen that this is a
near-optimal strategy.

2. Although a genetic algorithm only processes m structures at a time,
it implicitly accumulates and exploits information about an enormous
number of schemata in parallel.

3. We were tempted to believe that a genetic algorithm produces solu-
tions by the juxtaposition of small efficient parts—the building blocks.
Our detailed considerations have shown, however, that this good prop-
erty can only hold if the coding is chosen properly. One sophisticated
example, the TSP, has shown how difficult this can be for non-trivial
problems.
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Chapter 4

Variants

Ich möchte aber behaupten, daß die Experimentiermethode der
Evolution gleichfalls einer Evolutions unterliegt. Es ist nämlich
nicht nur die momentane Lebensleistung eines Individuums für
das Überleben der Art wichtig; nach mehreren Generationen wird
auch die bessere Vererbungs-Strategie, die eine schnellere Um-
weltanpassung zustandebringt, ausgelesen und weiterentwickelt.

Ingo Rechenberg

As Rechenberg pointed out correctly [25], the mechanisms behind evolution
themselves are subject to evolution. The diversity and the stage of develop-
ment of nature as we see it today would have never been achieved only with
asexual reproduction. It is exactly the sophistication of genetic mechanisms
which allowed faster and faster adaptation of genetic material. So far, we
have only considered a very simple class of GAs. This chapter is intended to
provide an overview of more sophisticated variants.

4.1 Messy Genetic Algorithms

In a “classical” genetic algorithm, the genes are encoded in a fixed order. The
meaning of a single gene is determined by its position inside the string. We
have seen in the previous chapter that a genetic algorithm is likely to converge
well if the optimization task can be divided into several short building blocks.
What, however, happens if the coding is chosen such that couplings occur
between distant genes? Of course, one-point crossover tends to disadvantage
long schemata (even if they have low order) over short ones.

51
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Figure 4.1: A messy coding.
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Figure 4.2: Positional preference: Genes with index 1 and 6 occur twice, the
first occurrences are used.

Messy genetic algorithms try to overcome this difficulty by using a varia-
ble-length, position-independent coding. The key idea is to append an index
to each gene which allows to identify its position [14, 15]. A gene, therefore,
is no longer represented as a single allele value and a fixed position, but as
a pair of an index and an allele. Figure 4.1 shows how this “messy” coding
works for a string of length 6.

Since the genes can be identified uniquely by the help of the index, genes
may swapped arbitrarily without changing the meaning of the string. With
appropriate genetic operations, which also change the order of the pairs, the
GA could possibly group coupled genes together automatically.

Due to the free arrangement of genes and the variable length of the en-
coding, we can, however, run into problems which do not occur in a simple
GA. First of all, it can happen that there are two entries in a string which
correspond to the same index, but have conflicting alleles. The most obvious
way to overcome this “over-specification” is positional preference—the first
entry which refers to a gene is taken. Figure 4.2 shows an example.

The reader may have observed that the genes with indices 3 and 5 do
not occur at all in the example in Figure 4.2. This problem of “under-
specification” is more complicated and its solution is not as obvious as for
over-specification. Of course, a lot of variants are reasonable. One approach
could be to check all possible combinations and to take the best one (for
k missing genes, there are 2k combinations). With the objective to reduce
this effort, Goldberg et al. [14] have suggested to use so-called competitive
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Figure 4.3: The cut and splice operation. There are 12 possible ways to
splice the four parts. This example shows five of them.

templates for finding specifications for k missing genes. It is nothing else
than applying a local hill climbing method with random initial value to the
k missing genes.

While messy GAs usually work with the same mutation operator as simple
GAs (every allele is altered with a low probability pM), the crossover operator
is replaced by a more general cut and splice operator which also allows to
mate parents with different lengths. The basic idea is to choose cut sites
for both parents independently and to splice the four fragments. Figure 4.3
shows an example.

4.2 Alternative Selection Schemes

Depending on the actual problem, other selection schemes than the roulette
wheel can be useful:

Linear rank selection: In the beginning, the potentially good individuals
sometimes fill the population too fast which can lead to premature
convergence into local maxima. On the other hand, refinement in the
end phase can be slow since the individuals have similar fitness values.
These problems can be overcome by taking the rank of the fitness values
as the basis for selection instead of the values themselves.

Tournament selection: Closely related to problems above, it can be better
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not to use the fitness values themselves. In this scheme, a small group
of individuals is sampled from the population and the individual with
best fitness is chosen for reproduction. This selection scheme is also
applicable when the fitness function is given in implicit form, i.e. when
we only have a comparison relation which determines which of two
given individuals is better.

Moreover, there is one “plug-in” which is frequently used in conjunction with
any of the three selection schemes we know so far—elitism. The idea is to
avoid that the observed best-fitted individual dies out just by selecting it for
the next generation without any random experiment. Elitism is widely used
for speeding up the convergence of a GA. It should, however, be used with
caution, because it can lead to premature convergence.

4.3 Adaptive Genetic Algorithms

Adaptive genetic algorithms are GAs whose parameters, such as the popula-
tion size, the crossing over probability, or the mutation probability are varied
while the GA is running (e.g. see [8]). A simple variant could be the follow-
ing: The mutation rate is changed according to changes in the population;
the longer the population does not improve, the higher the mutation rate is
chosen. Vice versa, it is decreased again as soon as an improvement of the
population occurs.

4.4 Hybrid Genetic Algorithms

As they use the fitness function only in the selection step, genetic algorithms
are blind optimizers which do not use any auxiliary information such as
derivatives or other specific knowledge about the special structure of the
objective function. If there is such knowledge, however, it is unwise and
inefficient not to make use of it. Several investigations have shown that a lot
of synergism lies in the combination of genetic algorithms and conventional
methods.

The basic idea is to divide the optimization task into two complemen-
tary parts. The coarse, global optimization is done by the GA while local
refinement is done by the conventional method (e.g. gradient-based, hill
climbing, greedy algorithm, simulated annealing, etc.). A number of variants
is reasonable:
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1. The GA performs coarse search first. After the GA is completed, local
refinement is done.

2. The local method is integrated in the GA. For instance, every K gen-
erations, the population is doped with a locally optimal individual.

3. Both methods run in parallel: All individuals are continuously used as
initial values for the local method. The locally optimized individuals
are re-implanted into the current generation.

4.5 Self-Organizing Genetic Algorithms

As already mentioned, the reproduction methods and the representations of
the genetic material were adapted through the billions of years of evolution
[25]. Many of these adaptations were able to increase the speed of adaptation
of the individuals. We have seen several times that the choice of the coding
method and the genetic operators is crucial for the convergence of a GA.
Therefore, it is promising not to encode only the raw genetic information,
but also some additional information, for example, parameters of the coding
function or the genetic operators. If this is done properly, the GA could find
its own optimal way for representing and manipulating data automatically.
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Chapter 5

Tuning of Fuzzy Systems Using
Genetic Algorithms

There are two concepts within fuzzy logic which play a central role
in its applications. The first is that of a linguistic variable, that is,
a variable whose values are words or sentences in a natural or syn-
thetic language. The other is that of a fuzzy if-then rule in which
the antecedent and consequent are propositions containing linguis-
tic variables. The essential function served by linguistic variables
is that of granulation of variables and their dependencies. In ef-
fect, the use of linguistic variables and fuzzy if-then rules results—
through granulation—in soft data compression which exploits the
tolerance for imprecision and uncertainty. In this respect, fuzzy
logic mimics the crucial ability of the human mind to summarize
data and focus on decision-relevant information.

Lotfi A. Zadeh

Since it is not the main topic of this lecture, a detailed introduction to fuzzy
systems is omitted here. We restrict ourselves to a few basic facts which
are sufficient for understanding this chapter (the reader is referred to the
literature for more information [20, 21, 27, 31]).

The quotation above brilliantly expresses what the core of fuzzy systems
is: Linguistic if-then rules involving vague propositions (e.g. “large”, “small”,
“old”, “around zero”, etc.). By this way, fuzzy systems allow reproducible
automation of tasks for which no analytic model is known, but for which
linguistic expert knowledge is available. Examples range from complicated
chemical processes over power plant control, quality control, etc.
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This sounds fine at first glance, but poses a few questions: How can such
vague propositions be represented mathematically and how can we process
them? The idea is simple but effective: Such vague assertions are modeled by
means of so-called fuzzy sets, i.e. sets which can have intermediate degrees
of membership (the unit interval [0, 1] is usually taken as the domain of
membership degrees). By this way, it is possible to model concepts like “tall
men” which can never be represented in classical set theory without drawing
ambiguous, counter-intuitive boundaries.

In order to summarize, there are three essential components of fuzzy
systems:

1. The rules, i.e. a verbal description of the relationships.

2. The fuzzy sets (membership functions), i.e. the semantics of the vague
expressions used in the rules.

3. An inference machine, i.e. a mathematical methodology for processing
a given input through the rule base.

Since this is not a major concern in this lecture, let us assume that a rea-
sonable inference scheme is given. There are still two important components
left which have to be specified in order to make a fuzzy system work—the
rules and the fuzzy sets. In many cases, they can both be found simply by
using common sense (some consider fuzzy systems as nothing else than a
mathematical model of common sense knowledge). In most problems, how-
ever, there is only an incomplete or inexact description of the automation
task. Therefore, researchers have begun soon to investigate methods for find-
ing or optimizing the parameters of fuzzy systems. So far, we can distinguish
between the following three fundamental learning tasks:

1. The rules are given, but the fuzzy sets are unknown at all and must
be found or, what happens more often, they can only be estimated
und need to be optimized. A typical example would be the following:
The rules for driving a car are taught in every driving school, e.g. “for
starting a car, let in the clutch gently and, simultaneously, step on the
gas carefully”, but the beginner must learn from practical experience
what “letting in the clutch gently” actually means.

2. The semantical interpretation of the rules is known sufficiently well,
but the relationships between input and output, i.e. the rules, are not
known. A typical example is extracting certain risk factors from patient
data. In this case, it is sufficiently known which blood pressures are
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high and which are low, but the factors, which really influence the risk
of getting a certain disease, are unknown.

3. Nothing is known, both fuzzy sets and rules must be acquired, for
instance, from sample data.

5.1 Tuning of Fuzzy Sets

Let us start with the first learning task—how to find optimal configurations of
fuzzy sets. In Chapter 2, we have presented a universal algorithm for solving
a very general class of optimization problems. We will now study how such
a simple GA can be applied to the optimization of fuzzy sets. All we need is
an appropriate coding, genetic operators (in case that the standard variants
are not sufficient), and a fitness measure.

5.1.1 Coding Fuzzy Subsets of an Interval

Since this is by far the most important case in applications of fuzzy systems,
let us restrict to fuzzy subsets of a given real interval [a, b]. Of course, we will
never be able to find a coding which accommodates any possible fuzzy set.
It is usual in applications to fix a certain subclass which can be represented
by means of a finite set of parameters. Descriptions of such fuzzy sets can
then be encoded by coding these parameters.

The first class we mention here are piecewise linear membership functions
with a fixed set of grid points (a = x0, x1, . . . , xn−1, xn = b), an equally
spaced grid in the simplest case. Popular fuzzy control software tools like
fuzzyTECH or TILShell use this technique for their internal representations
of fuzzy sets. It is easy to see that the shape of the membership function
is uniquely determined by the membership degrees in the grid points (see
Figure 5.1 for an example). Therefore, we can simply encode such a fuzzy
set by putting codings of all these membership values in one large string:

cn,[0,1](µ(x0)) cn,[0,1](µ(x1)) · · · cn,[0,1](µ(xn))

A reasonable resolution for encoding the membership degrees is n = 8. Such
an 8-bit coding is used in several software systems, too.

For most problems, however, simpler representations of fuzzy sets are suf-
ficient. Many real-world applications use triangular and trapezoidal mem-
bership functions (cf. Figure 5.2). Not really surprising, a triangular fuzzy
set can be encoded as
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cn,[a,b](r) cn,[0,δ](u) cn,[0,δ](v) ,

where δ is an upper boundary for the size of the offsets, for example δ =
(b− a)/2. The same can be done analogously for trapezoidal fuzzy sets:

cn,[a,b](r) cn,[0,δ](q) cn,[0,δ](u) cn,[0,δ](v) .

In specific control applications, where the smoothness of the control sur-
face plays an important role, fuzzy sets of higher differentiability must be
used. The most prominent representative is the bell-shaped fuzzy set whose
membership function is given by a Gaussian bell function:

µ(x) = e−
(x−r)2

2u2

The “bell-shaped analogue” to trapezoidal fuzzy sets are so-called radial basis
functions:

µ(x) =

{
e−

(|x−r|−q)2

2u2 if |x− r| > q
1 if |x− r| ≤ q

Figure 5.3 shows a typical bell-shaped membership function. Again the cod-
ing method is straightforward, i.e.

cn,[a,b](r) cn,[ε,δ](u)

where ε is a lower limit for the spread u. Analogously for radial basis func-
tions:

cn,[a,b](r) cn,[0,δ](q) cn,[ε,δ](u)

The final step is simple and obvious: In order to define a coding of the
whole configuration, i.e. of all fuzzy sets involved, it is sufficient to put codings
of all relevant fuzzy sets into one large string.

5.1.2 Coding Whole Fuzzy Partitions

There is often a-priori knowledge about the approximate configuration, for in-
stance, something like an ordering of the fuzzy sets. A general method, which
encodes all fuzzy sets belonging to one linguistic variable independently like
above, yields an unnecessarily large search space. A typical situation, not
only in control applications, is that we have a certain number of fuzzy sets
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Figure 5.1: Piecewise linear membership function with fixed grid points.
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Figure 5.2: Simple fuzzy sets with piecewise linear membership functions
(triangular left, trapezoidal right).
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Figure 5.3: Simple fuzzy sets with smooth membership functions (bell-shaped
left, radial basis right).
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with labels, like “small”, “medium”, and “large” or “negative big”, “negative
medium”, “negative small”, “approximately zero”, “positive small”, “posi-
tive medium”, and “positive big”. In such a case, we have a natural ordering
of the fuzzy sets. By including appropriate constraints, the ordering of the
fuzzy sets can be preserved while reducing the number of degrees of freedom.

We will now study a simple example—an increasing sequence of trape-
zoidal fuzzy sets. Such a “fuzzy partition” is uniquely determined by an
increasing sequence of 2N points, where N is the number of linguistic values
we consider. The mathematical formulation is the following:

µ1(x) =


1 if x ∈ [x0, x1]
x2−x
x2−x1

if x ∈ (x1, x2)

0 otherwise

µi(x) =


x−x2i−3

x2i−2−x2i−3
if x ∈ (x2i−3, x2i−2)

1 if x ∈ [x2i−2, x2i−1]
x2i−x

x2i−x2i−1
if x ∈ (x2i, x2i−1)

0 otherwise

for 2 ≤ i ≤ N − 1

µN(x) =


x−x2N−3

x2N−2−x2N−3
if x ∈ (x2N−3, x2N−2)

1 if x ≥ x2N−2

0 otherwise

Figure 5.4 shows a typical example with N = 4. It is not wise to encode the
values xi as they are, since this requires constraints for ensuring that xi are
non-decreasing. A good alternative is to encode the offsets:

cn,[0,δ](x1) cn,[0,δ](x2 − x1) · · · cn,[0,δ](x2N−2 − x2N−3)

5.1.3 Standard Fitness Functions

Although it is impossible to formulate a general recipe which fits for all kinds
of applications, there is one important standard situation—the case where a
set of representative input-output examples is given. Assume that F (~v, x) is
the function which computes the output for a given input x with respect to
the parameter vector ~v. Example data is given as a list of couples (xi, yi) with
1 ≤ i ≤ K (K is the number of data samples). Obviously, the goal is to find
a parameter configuration ~v such that the corresponding outputs F (~v, xi)
match the sample outputs yi as well as possible. This can be achieved by
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Figure 5.4: A fuzzy partition with N = 4 trapezoidal parts.

minimizing the error function

f(~v) =
K∑

i=1

d
(
F (~v, xi), yi

)
,

where d(., .) is some distance measure defined on the output space. In case
that the output consists of real numbers, one prominent example is the well-
known sum of quadratic errors:

f(~v) =
K∑

i=1

(
F (~v, xi)− yi

)2

5.1.4 Genetic Operators

Since we have only dealt with binary representations of fuzzy sets and parti-
tions, all the operators from Chapter 2 are also applicable here. We should
be aware, however, that the offset encoding of fuzzy partitions is highly
epistatic. More specifically, if the first bit encoding x1 is changed, the whole
partition is shifted. If this results in bad convergence, the crossover operator
should be modified. A suggestion can be found, for instance, in [3]. Figure
5.5 shows an example what happens if two fuzzy partitions are crossed with
normal one-point crossover. Figure 5.6 shows the same for bitwise mutation.
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Figure 5.5: Example for one-point crossover of fuzzy partitions.
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Figure 5.6: Mutating a fuzzy partition.

5.2 A Practical Example

Pixel classification is an important preprocessing task in many image process-
ing applications. In this project, where the FLLL developed an inspection
system for a silk-screen printing process, it was necessary to extract regions
from the print image which had to be checked by applying different criteria:

Homogeneous area: Uniformly colored area;

Edge area: Pixels within or close to visually significant edges;

Halftone: Area which looks rather homogeneous from a certain distance,
although it is actually obtained by printing small raster dots of two or
more colors;

Picture: Rastered area with high, chaotic deviations, in particular small
high-contrasted details.
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Homogeneous Edge Halftone Picture

Figure 5.7: Magnifications of typical representatives of the four types of
pixels.
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Figure 5.8: Clockwise enumeration of neighbor pixels.

The magnifications in Figure 5.7 show how these areas typically look like at
the pixel level. Of course, transitions between two or more of these areas are
possible, hence a fuzzy model is recommendable.

If we plot the gray values of the eight neighbor pixels according to a clock-
wise enumeration (cf. Figure 5.8), we typically get curves like those shown
in Figure 5.9. Seemingly, the size of the deviations, e.g. by computing the
variance, can be used to distinguish between homogeneous areas, halftones
and the other two types. On the other hand, a method which judges the
width and connectedness of the peaks should be used in order to separate
edge areas from pictures. A simple but effective method for this purpose is
the so-called discrepancy norm, for which there are already other applications
in pattern recognition (cf. [22]):

‖~x‖D = max
1≤α≤β≤n

∣∣∣∣∣
β∑

i=α

xi

∣∣∣∣∣
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Figure 5.9: Typical gray value curves corresponding to the four types.

A more detailed analysis of the discrepancy norm, especially how it can be
computed in linear time, can be found in [2].

5.2.1 The Fuzzy System

For each pixel (i, j), we consider its nearest eight neighbors enumerated as
described above, which yields a vector of eight gray values. As already men-
tioned, the variance of the gray value vector can be taken as a measure for
the size of the deviations in the neighborhood of the pixel. Let us denote this
value with v(i, j). On the other hand, the discrepancy norm of the vector,
where we subtract each entry by the mean value of all entries, can be used as
a criterion whether the pixel is within or close to a visually significant edge
(let us call this value e(i, j) in the following).

The fuzzy decision is then carried out for each pixel (i, j) independently:
First of all, the characteristic values v(i, j) and e(i, j) are computed. These
values are taken as the input of a small fuzzy system with two inputs and one
output. Let us denote the linguistic variables on the input side with v and
e. Since the position of the pixel is of no relevance for the decision in this
concrete application, indices can be omitted here. The input space of the
variable v is represented by three fuzzy sets which are labeled “low”, “med”,
and “high”. Analogously, the input space of the variable e is represented by
two fuzzy sets, which are labeled “low” and “high”. Experiments have shown
that [0, 600] and [0, 200] are appropriate domains for v and e, respectively. For
the decomposition of the input domains, simple fuzzy partitions consisting of
trapezoidal fuzzy subsets were chosen. Figure 5.10 shows how these partitions
basically look like.

The output space is a set of linguistic labels, namely “Ho”, “Ed”, “Ha”,
and “Pi”, which are, of course, just abbreviations of the names of the four
types. Let us denote the output variable itself with t. Finally, the output of



68 5. Tuning of Fuzzy Systems Using Genetic Algorithms

6

-

\
\

\
\�

�
�
� \

\
\
\�

�
�
�

low med high

v1 v2 v3 v4

6

-

low

e1

l
l

l
ll,

,
,

,,

high

e2

Figure 5.10: The linguistic variables v and e.

the system for each pixel (i, j) is a fuzzy subset of {“Ho”, “Ed”, “Ha”, “Pi”}.
This output set is computed by processing the values v(i, j) and e(i, j)
through a rule base with five rules, which cover all the possible combina-
tions:

IF v is low THEN t = Ho
IF v is med AND e is high THEN t = Ed
IF v is high AND e is high THEN t = Ed
IF v is med AND e is low THEN t = Ha
IF v is high AND e is low THEN t = Pi

In this application, ordinary Mamdani min/max-inference is used. Fi-
nally, the degree to which “Ho”, “Ed”, “Ha”, or “Pi” belong to the output
set can be regarded as the degree to which the particular pixel belongs to
area Homogeneous, Edge, Halftone, or Picture, respectively.

5.2.2 The Optimization of the Classification System

The behavior of the fuzzy system depends on six parameters, v1, . . . , v4, e1,
and e2, which determine the shape of the two fuzzy partitions. In the first
step, these parameters were tuned manually. Of course, we have also taken
into consideration to use (semi)automatic methods for finding the optimal
parameters.

Our optimization procedure consists of a painting program which offers
tools, such as a pencil, a rubber, a filling algorithm, and many more. This
painting tool can be used to make a reference classification of a given rep-
resentative image by hand. Then an optimization algorithm can be used
to find that configuration of parameters which yields the maximal degree of
matching between the desired result and the output actually obtained by the
classification system.

Assume that we have a set of N sample pixels for which the input values
(ṽk, ẽk)k∈{1,...,N} are computed and that we already have a reference classifi-
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cation of these pixels

t̃(k) = (t̃Ho(k), t̃Ed(k), t̃Ha(k), t̃Pi(k)),

where k ∈ {1, . . . , N}. Since, as soon as the values ṽ and ẽ are computed,
the geometry of the image plays no role anymore, we can switch to one-
dimensional indices here. One possible way to define the performance (fit-
ness) of the fuzzy system would be

1

N

N∑
k=1

d(t(k), t̃(k)), (5.1)

where t(k) = (tHo(k), tEd(k), tHa(k), tPi(k)) are the classifications actually
obtained by the fuzzy system for the input pairs (ṽk, ẽk) with respect to the
parameters v1, v2, v3, v4, e1, and e2; d(., .) is an arbitrary (pseudo-)metric on
[0, 1]4. The problem of this brute force approach is that the output of the
fuzzy system has to be evaluated for each pair (vk, ek), even if many of these
values are similar or even equal. In order to keep the amount of computation
low, we “simplified” the procedure by a “clustering process” as follows:

We choose a partition (P1, . . . , PK) of the input space, where (n1, . . . , nK)
are the numbers of sample points {pi

1, . . . , p
i
ni
} each part contains. Then the

desired classification of a certain part (cluster) can be defined as

t̃X(Pi) =
1

ni

ni∑
j=1

t̃X(pi
j),

where X ∈ {Ho, Ed, Ha, Pi}.
If φ is a function which maps each cluster to a representative value (e.g.,

its center of gravity), we can define the fitness (objective) function as

100

N

K∑
i=1

ni ·

1− 1

2
·

∑
X∈{Ho,Ed,Ha,Pi}

(
t̃X(Pi)− tX(φ(Pi))

)2

 , (5.2)

If the number of parts is chosen moderately (e.g. a rectangular 64 × 32
net which yields K = 2048) the evaluation of the fitness function takes
considerably less time than a direct application of formula (5.1).

Note that in (5.2) the fitness is already transformed such that it can
be regarded as a degree of matching between the desired and the actually
obtained classification measured in percent. This value has to be maximized.
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Figure 5.11: Cross sections of a function of type (5.2).

In fact, fitness functions of this type are, in almost all cases, continuous
but not differentiable and have a lot of local maxima. Figure 5.11 shows
cross sections of such functions. Therefore, it is more reasonable rather to use
probabilistic optimization algorithms than to apply continuous optimization
methods, which make excessive use of derivatives. This, first of all, requires
a (binary) coding of the parameters. We decided to use a coding which
maps the parameters v1, v2, v3, v4, e1, and e2 to a string of six 8-bit integers
s1, . . . , s6 which range from 0 to 255. The following table shows how the
encoding and decoding is done:

s1 = v1 v1 = s1

s2 = v2 − v1 v2 = s1 + s2

s3 = v3 − v2 v3 = s1 + s2 + s3

s4 = v4 − v3 v4 = s1 + s2 + s3 + s4

s5 = e1 e1 = s5

s6 = e2 − e1 e2 = s5 + s6

We first tried a simple GA with standard roulette wheel selection, one-
point crossover with uniform selection of the crossing point, and bitwise
mutation. The length of the strings was, as shown above, 48.

In order to compare the performance of the GAs with other well-known
probabilistic optimization methods, we additionally considered the following
methods:

Hill climbing: always moves to the best-fitted neighbor of the current string
until a local maximum is reached; the initial string is generated ran-
domly.

Simulated annealing: powerful, often-used probabilistic method which is
based on the imitation of the solidification of a crystal under slowly
decreasing temperature
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fmax fmin f̄ σf It

Hill Climbing 94.3659 89.6629 93.5536 1.106 862

Simulated Annealing 94.3648 89.6625 93.5639 1.390 1510

Improved Simulated
Annealing

94.3773 93.7056 94.2697 0.229 21968

GA 94.3760 93.5927 94.2485 0.218 9910

Hybrid GA (elite) 94.3760 93.6299 94.2775 0.207 7460

Hybrid GA (random) 94.3776 94.3362 94.3693 0.009 18631

Figure 5.12: A comparison of results obtained by several different optimiza-
tion methods.

Each one of these methods requires only a few binary operations in each step.
Most of the time is consumed by the evaluation of the fitness function. So, it
is near at hand to take the number of evaluations as a measure for the speed
of the algorithms.

Results

All these algorithms are probabilistic methods; therefore, their results are
not well-determined, they can differ randomly within certain boundaries. In
order to get more information about their average behavior, we tried out
each one of them 20 times for one certain problem. For the given problem,
we found out that the maximal degree of matching between the reference
classification and the classification actually obtained by the fuzzy system
was 94.3776%. In the table in Figure 5.12, fmax is the fitness of the best and
fmin is the fitness of the worst solution; f̄ denotes the average fitness of the
20 solutions, σf denotes the standard deviation of the fitness values of the 20
solutions, and # stands for the average number of evaluations of the fitness
function which was necessary to reach the solution.

The hill climbing method with random selection of the initial string con-
verged rather quickly. Unfortunately, it was always trapped in a local maxi-
mum, but never reached the global solution (at least in these 20 trials).
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Figure 5.13: A graphical representation of the results.
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The simulated annealing algorithm showed similar behavior at the very
beginning. After tuning the parameters involved, the performance improved
remarkably.

The raw genetic algorithm was implemented with a population size of
20; the crossover probability was set to 0.85, the mutation probability was
0.005 for each byte. It behaved pretty well from the beginning, but it seemed
inferior to the improved simulated annealing.

Next, we tried a hybrid GA, where we kept the genetic operations and pa-
rameters of the raw GA, but every 50th generation the best-fitted individual
was taken as initial string for a hill climbing method. Although the perfor-
mance increased slightly, the hybrid method still seemed to be worse than
the improved simulated annealing algorithm. The reason that the effects of
this modification were not so dramatic might be that the probability is rather
high that the best individual is already a local maximum. So we modified
the procedure again. This time a randomly chosen individual of every 25th
generation was used as initial solution of the hill climbing method. The re-
sult exceeded the expectations by far. The algorithm was, in all cases, nearer
to the global solution than the improved simulated annealing (compare with
table in Figure 5.12), but, surprisingly, sufficed with less invocations of the
fitness function. The graph in Figure 5.13 shows the results graphically. Each
line in this graph corresponds to one algorithm. The curve shows, for a given
fitness value x, how many of the 20 different solutions had a fitness higher
or equal to x. It can be seen easily from this graph that the hybrid GA with
random selection led to the best results. Note that the x-axis is not a linear
scale in this figure. It was transformed in order to make small differences
visible.

5.2.3 Concluding Remarks

In this example, we have investigated the suitability of genetic algorithms
for finding the optimal parameters of a fuzzy system, especially if the ana-
lytical properties of the objective function are bad. Moreover, hybridization
has been discovered as an enormous potential for improvements of genetic
algorithms.

5.3 Finding Rule Bases with GAs

Now let us briefly turn to the second learning problem from Page 58. If we
find a method for encoding a rule base into a string of a fixed length, all
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the genetic methods we have dealt with so far, are applicable with only little
modifications. Of course, we have to assume in this case that the numbers
of linguistic values of all linguistic variables are finite.

The simplest case is that of coding a complete rule base which covers all
the possible cases. Such a rule base is represented as a list for one input
variable, as a matrix for two variables, and as a tensor in the case of more
than two input variables. For example, consider a rule base of the following
form (the generalization to more than two input variable is straightforward):

IF x1 is Ai AND x2 is Bj THEN y is C̃i,j

Ai and Bj are verbal values of the variables x1 and x2, respectively. All
the values Ai are pairwise different, analogously for the values Bj; i ranges
from 1 to N1, the total number of linguistic values of variable x1; j ranges
from 1 to N2, the total number of linguistic values of variable x2. The values
C̃i,j are arbitrary elements of the set of pairwise different linguistic values
{C1, . . . , CNy} associated with the output variable y. Obviously, such a rule
base is uniquely represented by a matrix, a so-called decision table:

B1 · · · BN2

A1 C̃1,1 · · · C̃1,N2

...
...

. . .
...

AN1 C̃N1,1 · · · C̃N1,N2

Of course, the representation is still unique if we replace the values C̃i,j by
their unique indices within the set {C1, . . . , CNy} and we have found a proper
coding scheme for table-based rule bases.

5.1 Example. Consider a fuzzy system with two inputs (x1 and x2) and one
output y. The domains of all three variables are divided into four fuzzy sets
labeled “small”, “medium”, “large”, and “very large” (for short, abbreviated
“S”, “M”, “L”, and “V”). We will now study how the following decision table
can be encoded into a string:

S M L V
S S S S M
M S S M L
L S M L V
V M L V V

For example, the third entry “M” in the second row reads as follows:

IF x1 is medium AND x2 is large THEN y is medium
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If we assign indices ranging from 0–3 to the four linguistic values associated
with the output variable y, we can write the decision table as an integer
string with length 16:

(0, 0, 0, 1, 0, 0, 1, 2, 0, 1, 2, 3, 1, 2, 3, 3)

Replacing the integer values with two-bit binary strings, we obtain a 32-bit
binary string which uniquely describes the above decision table:

(00000001000001100001101101101111)

For the method above, genetic algorithms of type 2.5 are perfectly suit-
able. Of course, the fitness functions, which we have introduced in 5.1.3, can
also be used without any modifications.

It is easy to see that the approach above works consequent-oriented,
meaning that the premises are fixed—only the consequent values must be
acquired. Such an idea can only be applied to optimization of complete rule
bases which are, in more complex applications, not so easy to handle. More-
over, complete rule bases are often an overkill and require a lot of storage
resources. In many applications, especially in control, it is enough to have
an incomplete rule base consisting of a certain number of rules which cover
the input space sufficiently well.

The acquisition of incomplete rule bases is a task, which is not so easy to
solve with representations of fixed length. We will come to this point a little
later.
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Chapter 6

Genetic Programming

How can computers learn to solve problems without being explic-
itly programmed? In other words, how can computers be made to
do what is needed to be done, without being told explicitly how to
do it?

John R. Koza

Mathematicians and computer scientists, in their everyday practice, do noth-
ing else than searching for programs which solve given problems properly.
They usually try to design such programs based on their knowledge of the
problem, its underlying principles, mathematical models, their intuition, etc.
Koza’s questions seem somehow provocative and utopian. His answers, how-
ever, are remarkable and worth to be discussed here in more detail. The basic
idea is simple but appealing—to apply genetic algorithms to the problem of
automatic program induction. All we need in order to do so are appropri-
ate modifications of all genetic operations we have discussed so far. This
includes random initialization, crossover, and mutation. For selection and
sampling, we do not necessarily need anything new, because these methods
are independent of the underlying data representation.

Of course, this sounds great. The question arises, however, whether this
kind of Genetic Programming (GP) can work at all. Koza, in his remarkable
monograph [19], starts with a rather vague hypothesis.

6.1 The Genetic Programming Paradigm. Provided that we are given a
solvable problem, a definition of an appropriate programming language, and
a sufficiently large set of representative test examples (correct input-output
pairs), a genetic algorithm is able to find a program which (approximately)
solves the problem.

77
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This seems to be a matter of believe. Nobody has been able to prove
this hypothesis so far and it is doubtable whether this will ever be possible.
Instead of giving a proof, Koza has elaborated a large set of well-chosen
examples which underline his hypothesis empirically. The problems he has
solved successfully with GP include the following:

• Process control (bang bang control of inverted pendulum)

• Logistics (simple robot control, stacking problems)

• Automatic programming (pseudo-random number generators, prime
number program, ANN design)

• Game strategies (Poker, Tic Tac Toe)

• Inverse kinematics

• Classification

• Symbolic computation:

– Sequence induction (Fibonacci sequence, etc.)

– Symbolic regression

– Solving equations (power series-based solutions of functional, dif-
ferential, and integral equations)

– Symbolic differentiation and integration

– Automatic discovery of trigonometric identities

This chapter is devoted to a brief introduction to genetic programming.
We will restrict ourselves to the basic methodological issues and omit to
elaborate examples in detail. For a nice example, the reader is referred to a
[12].

6.1 Data Representation

Without any doubt, programs can be considered as strings. There are, how-
ever, two important limitations which make it impossible to use the repre-
sentations and operations from our simple GA:

1. It is mostly inappropriate to assume a fixed length of programs.
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+

+

3 X

*

X

SIN

1

Figure 6.1: The tree representation of (+ (* 3 X) (SIN (+ X 1))).

2. The probability to obtain syntactically correct programs when applying
our simple initialization, crossover, and mutation procedures is hope-
lessly low.

It is, therefore, indispensable to modify the data representation and the oper-
ations such that syntactical correctness is easier to guarantee. The common
approach to represent programs in genetic programming is to consider pro-
grams as trees. By doing so, initialization can be done recursively, crossover
can be done by exchanging subtrees, and random replacement of subtrees
can serve as mutation operation.

Since their only construct are nested lists, programs in LISP-like lan-
guages already have a kind of tree-like structure. Figure 6.1 shows an ex-
ample how the function 3x + sin(x + 1) can be implemented in a LISP-like
language and how such a LISP-like function can be split up into a tree. Ob-
viously, the tree representation directly corresponds to the nested lists the
program consists of; atomic expressions, like variables and constants, are
leaves while functions correspond to non-leave nodes.

There is one important disadvantage of the LISP approach—it is difficult
to introduce type checking. In case of a purely numeric function like in the
above example, there is no problem at all. However, it can be desirable to
process numeric data, strings, and logical expressions simultaneously. This
is difficult to handle if we use a tree representation like in Figure 6.1.

A very general approach, which overcomes this problem allowing max-
imum flexibility, has been proposed by A. Geyer-Schulz. He suggested to
represent programs by their syntactical derivation trees with respect to a re-
cursive definition of underlying language in Backus-Naur Form (BNF) [10].
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This works for any context-free language. It is far beyond the scope of this
lecture to go into much detail about formal languages. We will explain the
basics with the help of a simple example. Consider the following language
which is suitable for implementing binary logical expressions:

S := 〈exp〉 ;
〈exp〉 := 〈var〉 | “(” 〈neg〉 〈exp〉 “)” | “(” 〈exp〉 〈bin〉 〈exp〉 “)” ;
〈var〉 := “x” | “y”;
〈neg〉 := “NOT” ;
〈bin〉 := “AND” | “OR” ;

The BNF description consists of so-called syntactical rules. Symbols in an-
gular brackets 〈〉 are called non-terminal symbols, i.e. symbols which have to
be expanded. Symbols between quotation marks are called terminal symbols,
i.e. they cannot be expanded any further. The first rule S:=〈exp〉; defines
the starting symbol. A BNF rule of the general shape

〈non-terminal〉 := 〈deriv1〉 | 〈deriv2〉 | · · · | 〈derivn〉 ;

defines how a non-terminal symbol may be expanded, where the different
variants are separated by vertical bars.

In order to get a feeling how to work with the BNF grammar description,
we will now show step by step how the expression (NOT (x OR y)) can be
derivated from the above language. For simplicity, we omit quotation marks
for the terminal symbols:

1. We have to begin with the start symbol: 〈exp〉

2. We replace 〈exp〉 with the second possible derivation:

〈exp〉 −→ (〈neg〉 〈exp〉)

3. The symbol 〈neg〉 may only be expanded with the terminal symbol
NOT:

(〈neg〉 〈exp〉) −→ (NOT 〈exp〉)

4. Next, we replace 〈exp〉 with the third possible derivation:

(NOT 〈exp〉) −→ (NOT (〈exp〉 〈bin〉 〈exp〉))

5. We expand the second possible derivation for 〈bin〉:

(NOT (〈exp〉 〈bin〉 〈exp〉)) −→ (NOT (〈exp〉 OR 〈exp〉))
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<exp>

1st of 3 1st of 3
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<bin>
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"x"

")"

"(" ")"

Figure 6.2: The derivation tree of (NOT (x OR y)).

6. The first occurrence of 〈exp〉 is expanded with the first derivation:

(NOT (〈exp〉 OR 〈exp〉)) −→ (NOT (〈var〉 OR 〈exp〉))

7. The second occurrence of 〈exp〉 is expanded with the first derivation,
too:

(NOT (〈var〉 OR 〈exp〉)) −→ (NOT (〈var〉 OR 〈var〉))

8. Now we replace the first 〈var〉 with the corresponding first alternative:

(NOT (〈var〉 OR 〈var〉)) −→ (NOT (x OR 〈var〉))

9. Finally, the last non-terminal symbol is expanded with the second al-
ternative:

(NOT (x OR 〈var〉)) −→ (NOT (x OR y))

Such a recursive derivation has an inherent tree structure. For the above
example, this derivation tree has been visualized in Figure 6.2.

6.1.1 The Choice of the Programming Language

The syntax of modern programming languages can be specified in BNF.
Hence, our data model would be applicable to all of them. The question
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is whether this is useful. Koza’s hypothesis includes that the programming
language has to be chosen such that the given problem is solvable. This does
not necessarily imply that we have to choose the language such that virtually
any solvable problem can be solved. It is obvious that the size of the search
space grows with the complexity of the language. We know that the size
of the search space influences the performance of a genetic algorithm—the
larger the slower.

It is, therefore, recommendable to restrict the language to necessary con-
structs and to avoid superfluous constructs. Assume, for example, that we
want to do symbolic regression, but we are only interested in polynomials
with integer coefficients. For such an application, it would be an overkill
to introduce rational constants or to include exponential functions in the
language. A good choice could be the following:

S := 〈func〉 ;
〈func〉 := 〈var〉 | 〈const〉 | “(” 〈func〉 〈bin〉 〈func〉 “)” ;
〈var〉 := “x” ;
〈const〉 := 〈int〉 | 〈const〉 〈int〉 ;
〈int〉 := “0” | · · · | “9” ;
〈bin〉 := “+” | “-” | “∗” ;

For representing rational functions with integer coefficients, it is sufficient to
add the division symbol “/” to the possible derivations of the binary operator
〈bin〉.

Another example: The following language could be appropriate for dis-
covering trigonometric identities:

S := 〈func〉 ;
〈func〉 := 〈var〉 | 〈const〉 | 〈trig〉 “(” 〈func〉 “)” |

“(” 〈func〉 〈bin〉 〈func〉 “)” ;
〈var〉 := “x” ;
〈const〉 := “0” | “1” | “π” ;
〈trig〉 := “sin” | “cos” ;
〈bin〉 := “+” | “-” | “∗” ;

6.2 Manipulating Programs

We have a generic coding of programs—the derivation trees. It remains to
define the three operators random initialization, crossover, and mutation for
derivations trees.
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6.2.1 Random Initialization

Until now, we did not pay any attention to the creation of the initial pop-
ulation. We assumed implicitly that the individuals of the first generation
can be generated randomly with respect to a certain probability distribution
(mostly uniform). Undoubtedly, this is an absolutely trivial task if we deal
with binary strings of fixed length. The random generation of derivation
trees, however, is a much more subtle task.

There are basically two different variants how to generate random pro-
grams with respect to a given BNF grammar:

1. Beginning from the starting symbol, it is possible to expand non-
terminal symbols recursively, where we have to choose randomly if we
have more than one alternative derivations. This approach is simple
and fast, but has some disadvantages: Firstly, it is almost impossible
to realize a uniform distribution. Secondly, one has to implement some
constraints with respect to the depth of the derivation trees in order to
avoid excessive growth of the programs. Depending on the complexity
of the underlying grammar, this can be a tedious task.

2. Geyer-Schulz [11] has suggested to prepare a list of all possible deriva-
tion trees up to a certain depth1 and to select from this list randomly
applying a uniform distribution. Obviously, in this approach, the prob-
lems in terms of depth and the resulting probability distribution are
elegantly solved, but these advantages go along with considerably long
computation times.

6.2.2 Crossing Programs

It is trivial to see that primitive string-based crossover of programs almost
never yield syntactically correct programs. Instead, we should use the perfect
syntax information a derivation tree provides. Already in the LISP times of
genetic programming, some time before the BNF-based representation was
known, crossover was usually implemented as the exchange of randomly se-
lected subtrees. In case that the subtrees (subexpressions) may have different
types of return values (e.g. logical and numerical), it is not guaranteed that
crossover preserves syntactical correctness.

1The depth is defined as the number of all non-terminal symbols in the derivation tree.
There is no one-to-one correspondence to the height of the tree.
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The derivation tree-based representation overcomes this problem in a very
elegant way. If we only exchange subtrees which start from the same non-
terminal symbol, crossover can never violate syntactical correctness. In this
sense, the derivation tree model provides implicit typechecking.

In order to demonstrate in more detail how this crossover operation works,
let us reconsider the example of binary logical expressions (grammar defined
on page 80). As parents, we take the following expressions:

(NOT (x OR y))
((NOT x) OR (x AND y))

Figure 6.3 shows graphically how the two children

(NOT (x OR (x AND y)))
((NOT x) OR y)

are obtained.

6.2.3 Mutating Programs

We have always considered mutation as the random deformation of a small
part of a chromosome. It is, therefore, not surprising that the most common
mutation in genetic programming is the random replacement of a randomly
selected subtree. This can be accomplished with the method presented in
6.2.1. The only modification is that we do not necessarily start from the
start symbol, but from the non-terminal symbol at the root of the subtree
we consider. Figure 6.4 shows an example where, in the logical expression
(NOT (x OR y)), the variable y is replaced by (NOT y).

6.2.4 The Fitness Function

There is no common recipe for specifying an appropriate fitness function
which strongly depends on the given problem. It is, however, worth to em-
phasize that it is necessary to provide enough information to guide the GA to
the solution. More specifically, it is not sufficient to define a fitness function
which assigns 0 to a program which does not solve the problem and 1 to a pro-
gram which solves the problem—such a fitness function would correspond to
a needle-in-haystack problem. In this sense, a proper fitness measure should
be a gradual concept for judging the correctness of programs.
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Figure 6.3: An example for crossing two binary logical expressions.
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Figure 6.4: An example for mutating a derivation tree.

In many applications, the fitness function is based on a comparison of
desired and actually obtained output (compare with 5.1.3, p. 62). Koza, for
instance, uses the simple sum of quadratic errors for symbolic regression and
the discovery of trigonometric identities:

f(F ) =
N∑

i=1

(yi − F (xi))
2

In this definition, F is the mathematical function which corresponds to the
program under evaluation. The list (xi, yi)1≤i≤N consists of reference pairs—
a desired output yi is assigned to each input xi. Clearly, the samples have to
be chosen such that the considered input space is covered sufficiently well.

Numeric error-based fitness functions usually imply minimization prob-
lems. Some other applications may imply maximization tasks. There are
basically two well-known transformations which allow to standardize fitness
functions such that always minimization or maximization tasks are obtained.

6.2 Definition. Consider an arbitrary “raw” fitness function f . Assuming
that the number of individuals in the population is not fixed (mt at time t),
the standardized fitness is computed as

fS(bi,t) = f(bi,t)−
mt

max
j=1

f(bj,t)
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in case that f is to maximize and as

fS(bi,t) = f(bi,t)−
mt

min
j=1

f(bj,t)

if f has to be minimized. One possible variant is to consider the best individ-
ual of the last k generations instead of only considering the actual generation.

Obviously, standardized fitness transforms any optimization problem into
a minimization task. Roulette wheel selection relies on the fact that the
objective is maximization of the fitness function. Koza has suggested a simple
transformation such that, in any case, a maximization problem is obtained.

6.3 Definition. With the assumptions of Definition 6.2, the adjusted fitness
is computed as

fA(bi,t) =
mt

max
j=1

fS(bj,t)− fS(bj,t).

Another variant of adjusted fitness is defined as

f ′
A(bi,t) =

1

1 + fS(bj,t)
.

6.3 Fuzzy Genetic Programming

It was already mentioned that the acquisition of fuzzy rule bases from exam-
ple data is an important problem (Points 2. and 3. according to the classifi-
cation on pp. 58ff.). We have seen in 5.3, however, that the possibilities for
finding rule bases automatically are strongly limited. A revolutionary idea
was introduced by A. Geyer-Schulz: To specify a rule language in BNF and
to apply genetic programming. For obvious reasons, we refer to this synergis-
tic combination as fuzzy genetic programming. Fuzzy genetic programming
elegantly overcomes limitations of all other approaches:

1. If a rule base is represented as a list of rules of arbitrary length, we are
not restricted to complete decision tables.

2. We are not restricted to atomic expressions—it is easily possible to in-
troduce additional connectives and linguistic modifiers, such as “very”,
“at least”, “roughly”, etc.

The following example shows how a fuzzy rule language can be specified in
Backus-Naur form. Obviously, this fuzzy system has two inputs x1 and x2.
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The output variable is y. The domain of x1 is divided into three fuzzy sets
“neg”, “approx. zero”, and “pos”. The domain of x2 is divided into three
fuzzy sets which are labeled “small”, “medium”, and “large”. For the output
variable y, five atomic fuzzy sets called “nb”, “nm’, “z”, “pm’, and “pb” are
specified.

S := 〈rb〉 ;
〈rb〉 := 〈rule〉 | 〈rule〉 “,” 〈rb〉 ;
〈rule〉 := “IF” 〈premise〉 “THEN” 〈conclusion〉 ;
〈premise〉 := 〈atomic〉 | “(” 〈neg〉 〈premise〉 “)” |

“(” 〈premise〉 〈bin〉 〈premise〉 “)” ;
〈neg〉 := “NOT” ;
〈bin〉 := “AND” | “OR” ;
〈atomic〉 := “x1” “is” 〈val1〉 | “x2” “is” 〈val2〉 ;
〈conclusion〉 := “y” “is” 〈val3〉 ;
〈val1〉 := 〈adjective1〉 | 〈adverb〉 〈adjective1〉 ;
〈val2〉 := 〈adjective2〉 | 〈adverb〉 〈adjective2〉 ;
〈val3〉 := 〈adjective3〉 | 〈adverb〉 〈adjective3〉 ;
〈adverb〉 := “at least” | “at most” | “roughly” ;
〈adjective1〉 := “neg” | “approx. zero” | “pos” ;
〈adjective2〉 := “small” | “medium” | “large” ;
〈adjective3〉 := “nb” | “nm” | “z” | “pm’ | “pb”;

A very nice example on an application of genetic programming and fuzzy
genetic programming to a stock management problem can be found in [12].

6.4 A Checklist for Applying Genetic Pro-

gramming

We conclude this chapter with a checklist of things which are necessary to
apply genetic programming to a given problem:

1. An appropriate fitness function which provides enough information to
guide the GA to the solution (mostly based on examples).

2. A syntactical description of a programming language which contains as
much elements as necessary for solving the problem.

3. An interpreter for the programming language.



Chapter 7

Classifier Systems

Ever since Socrates taught geometry to the slave boy in Plato’s
Meno, the nature of learning has been an active topic of investi-
gation. For centuries, it was province of philosophers, who analyt-
ically studied inductive and deductive inference. A hundred years
ago, psychology began to use experimental methods to investigate
learning in humans and other organisms. Still more recently, the
computer has provided a research tool, engendering the field of
machine learning.

J. H. Holland, K. J. Holyoak, R. E. Nisbett, and P. R. Thagard

7.1 Introduction

Almost all GA-based approaches to machine learning problems have in com-
mon, firstly, that they operate on populations of models/descriptions/rule
bases and, secondly, that the individuals are judged globally, i.e. there is
one fitness value for each model indicating how good it describes the actual
interrelations in the data. The main advantage of such approaches is simplic-
ity: There are only two things one has to find—a data representation which
is suitable for a genetic algorithm and a fitness function. In particular, if
the representation is rule-based, no complicated examination which rules are
responsible for success or failure has to be done.

The convergence of such methods, however, can be weak, because single
obstructive parts can deteriorate the fitness of a whole description which
could contain useful, well-performing rules. Moreover, genetic algorithms are
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often perfect in finding suboptimal global solutions quickly; local refinement,
on the other hand, can take a long time.

Another aspect is that it is sometimes difficult to define a global quality
measure which provides enough information to guide a genetic algorithm to
a proper solution. Consider, for instance, the game of chess: A global quality
measure could be the percentage of successes in a large number of games or,
using more specific knowledge, the number of moves it took to be successful in
the case of success and the number of moves it had been possible to postpone
the winning of the opponent in the case of failure. It is easy to see that such
information provides only a scarce foundation for learning chess, even if more
detailed information, such as the number of captured pieces, is involved. On
the contrary, it is easier to learn the principles of chess, when the direct effect
of the application of a certain rule can be observed immediately or at least
after a few steps. The problem, not only in the case of chess, is that early
actions can also contribute much to a final success.

In the following, we will deal with a paradigm which can provide solutions
to some of the above problems—the so-called classifier systems of the Michi-
gan type. Roughly speaking, they try to find rules for solving a task in an
online process according to responses from the environment by employing a
genetic algorithm. Figure 7.1 shows the basic architecture of such a system.
The main components are:

1. A production system containing a rule base which processes incom-
ing messages from the environment and sends output messages to the
environment.

2. An apportionment of credit system which receives payoff from the en-
vironment and determines which rules had been responsible for that
feedback; this component assigns strength values to the single rules in
the rule base. These values represent the performance and usefulness
of the rules.

3. A genetic algorithm which recombines well-performing rules to new,
hopefully better ones, where the strengths of the rules are used as
objective function values.

Obviously, the learning task is divided into two subtasks—the judgment of
already existing and the discovery of new rules.

There are a few basic characteristics of such systems which are worth to
be mentioned:
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Figure 7.1: Basic architecture of a classifier system of the Michigan type.

1. The basis of the search does not consist of examples which describe
the task as in many classical ML methods, but of feedback from the
environment (payoff) which judges the correctness/usefulness of the
last decisions/actions.

2. There is no strict distinction between learning and working like, for
instance, in many ANN approaches.

3. Since learning is done in an online process, Michigan classifier systems
can adapt to changing circumstances in the environment.

7.2 Holland Classifier Systems

For illustrating in more detail how such systems basically work, let us first
consider a common variant—the so-called Holland classifier system.



92 7. Classifier Systems

A Holland classifier system is a classifier system of the Michigan type
which processes binary messages of a fixed length through a rule base whose
rules are adapted according to response of the environment [11, 16, 17].

7.2.1 The Production System

First of all, the communication of the production system with the environ-
ment is done via an arbitrarily long list of messages. The detectors translate
responses from the environment into binary messages and place them on the
message list which is then scanned and changed by the rule base. Finally, the
effectors translate output messages into actions on the environment, such as
forces or movements.

Messages are binary strings of the same length k. More formally, a mes-
sage belongs to {0, 1}k. The rule base consists of a fixed number m of rules
(classifiers) which consist of a fixed number r of conditions and an action,
where both conditions and actions are strings of length k over the alphabet
{0, 1, ∗}. The asterisk plays the role of a wildcard, a “don’t care” symbol.

A condition is matched, if and only if there is a message in the list which
matches the condition in all non-wildcard positions. Moreover, conditions,
except the first one, may be negated by adding a “–” prefix. Such a prefixed
condition is satisfied, if and only if there is no message in the list which
matches the string associated with the condition. Finally, a rule fires, if
and only if all the conditions are satisfied, i.e. the conditions are connected
with AND. Such “firing” rules compete to put their action messages on the
message list. This competition will soon be discussed in connection with the
apportionment of credit problem.

In the action parts, the wildcard symbols have a different meaning. They
take the role of “pass through” element. The output message of a firing rule,
whose action part contains a wildcard, is composed from the non-wildcard
positions of the action and the message which satisfies the first condition of
the classifier. This is actually the reason why negations of the first conditions
are not allowed. More formally, the outgoing message m̃ is defined as

m̃[i] =

{
a[i] if a[i] 6= ∗
m[i] if a[i] = ∗ i = 1, . . . , k,

where a is the action part of the classifier and m is the message which matches
the first condition. Formally, a classifier is a string of the form

Cond1, [“–”]Cond2, . . . , [“–”]Condr/Action,
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where the brackets should express the optionality of the “–” prefixes.

Depending on the concrete needs of the task to be solved, it may be de-
sirable to allow messages to be preserved for the next step. More specifically,
if a message is not interpreted and removed by the effector interface, it can
make another classifier fire in the next step. In practical applications, this
is usually accomplished by reserving a few bits of the messages for identify-
ing the origin of the messages (a kind of variable index called tag). Tagging
offers new opportunities to transfer information about the current step into
the next step simply by placing tagged messages on the list which are not
interpreted by the output interface. These messages, which obviously con-
tain information about the previous step, can support the decisions in the
next step. Hence, appropriate use of tags permits rules to be coupled to act
sequentially. In some sense, such messages are the memory of the system.

A single execution cycle of the production system consists of the following
steps:

1. Messages from the environment are appended to the message list.

2. All the conditions of all classifiers are checked against the message list
to obtain the set of firing rules.

3. The message list is erased.

4. The firing classifiers participate in a competition to place their messages
on the list (see 7.2.2).

5. The winning classifiers place their actions on the list.

6. The messages directed to the effectors are executed.

This procedure is repeated iteratively.

How 6. is done, if these messages are deleted or not, and so on, depends
on the concrete implementation. It is, on the one hand, possible to choose
a representation such that each output message can be interpreted by the
effectors. On the other hand, it is possible to direct messages explicitly to
the effectors with a special tag. If no messages are directed to the effectors,
the system is in a thinking phase.

A classifier R1 is called consumer of a classifier R2 if and only if there is a
message m′ which fulfills at least one of R1’s conditions and has been placed
on the list by R2. Conversely, R2 is called a supplier of R1.
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7.2.2 The Bucket Brigade Algorithm

As already mentioned, in each time step t, we assign a strength value ui,t

to each classifier Ri. This strength value represents the correctness and
importance of a classifier. On the one hand, the strength value influences
the chance of a classifier to place its action on the output list. On the other
hand, the strength values are used by the rule discovery system which we
will soon discuss.

In Holland classifier systems, the adaptation of the strength values de-
pending on the feedback (payoff) from the environment is done by the so-
called bucket brigade algorithm. It can be regarded as a simulated economic
system in which various agents, here the classifiers, participate in an auction,
where the chance to buy the right to post the action depends on the strength
of the agents.

The bid of classifier Ri at time t is defined as

Bi,t = cL · ui,t · si,

where cL ∈ [0, 1] is a learning parameter, similar to learning rates in artificial
neural nets, and si is the specifity, the number of non-wildcard symbols in
the condition part of the classifier. If cL is chosen small, the system adapts
slowly. If it is chosen too high, the strengths tend to oscillate chaotically.

Then the rules have to compete for the right for placing their output
messages on the list. In the simplest case, this can be done by a random ex-
periment like the selection in a genetic algorithm. For each bidding classifier
it is decided randomly if it wins or not, where the probability that it wins is
proportional to its bid:

P[Ri wins] =
Bi,t∑

j∈Satt

Bj,t

In this equation, Satt is the set of indices all classifiers which are satisfied
at time t. Classifiers which get the right to post their output messages are
called winning classifiers.

Obviously, in this approach, more than one winning classifier is allowed.
Of course, other selection schemes are reasonable, for instance, the highest
bidding agent wins alone. This can be necessary to avoid that two winning
classifiers direct conflicting actions to the effectors.

Now let us discuss how payoff from the environment is distributed and
how the strengths are adapted. For this purpose, let us denote the set of
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classifiers, which have supplied a winning agent Ri in step t, with Si,t. Then
the new strength of a winning agent is reduced by its bid and increased by
its portion of the payoff Pt received from the environment:

ui,t+1 = ui,t +
Pt

wt

−Bi,t,

where wt is the number of winning agents in the actual time step. A winning
agent pays its bid to its suppliers which share the bid among each other,
equally in the simplest case:

ul,t+1 = ul,t +
Bi,t

|Si,t|
for all Rl ∈ Si,t

If a winning agent has also been active in the previous step and supplies an-
other winning agent, the value above is additionally increased by one portion
of the bid the consumer offers. In the case that two winning agents have
supplied each other mutually, the portions of the bids are exchanged in the
above manner. The strengths of all other classifiers Rn, which are neither
winning agents nor suppliers of winning agents, are reduced by a certain
factor (they pay a tax):

un,t+1 = un,t · (1− T ),

T is a small values from [0, 1]. The intention of taxation is to punish classifiers
which never contribute anything to the output of the system. With this
concept, redundant classifiers, which never become active, can be filtered
out.

The idea behind credit assignment in general and bucket brigade in par-
ticular is to increase the strengths of rules which have set the stage for later
successful actions. The problem of determining such classifiers, which were
responsible for conditions under which it was later on possible to receive a
high payoff, can be very difficult. Consider, for instance, the game of chess
again, in which very early moves can be significant for a late success or fail-
ure. In fact, the bucket brigade algorithm can solve this problem, although
strength is only transferred to the suppliers which were active in the pre-
vious step. Each time the same sequence is activated, however, a little bit
of the payoff is transferred one step back in the sequence. It is easy to see
that repeated successful execution of a sequence increases the strengths of
all involved classifiers.

Figure 7.2 shows a simple example how the bucket brigade algorithm
works. For simplicity, we consider a sequence of five classifiers which always
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Figure 7.2: The bucket brigade principle.

bid 20 percent of their strength. Only after the fifth step, after the activation
of the fifth classifier, a payoff of 60 is received. The further development of
the strengths in this example is shown in the table in Figure 7.3. It is easy
to see from this example that the reinforcement of the strengths is slow at
the beginning, but it accelerates later. Exactly this property contributes
much to the robustness of classifier systems—they tend to be cautious at
the beginning, trying not to rush conclusions, but, after a certain number of
similar situations, the system adopts the rules more and more. Figure 7.4
shows a graphical visualization of this fact interpreting the table shown in
Figure 7.3 as a two-dimensional surface.

It might be clear, that a Holland classifier system only works if successful
sequences of classifier activations are observed sufficiently often. Otherwise
the bucket brigade algorithm does not have a chance to reinforce the strengths
of the successful sequence properly.
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Strength after the
3rd 100.00 100.00 101.60 120.80 172.00
4th 100.00 100.32 105.44 136.16 197.60
5th 100.06 101.34 111.58 152.54 234.46
6th 100.32 103.39 119.78 168.93 247.57

...
10th 106.56 124.17 164.44 224.84 278.52

...
25th 215.86 253.20 280.36 294.52 299.24

...
execution of the
sequence

Figure 7.3: An example for repeated propagation of payoffs.

7.2.3 Rule Generation

While the apportionment of credit system just judges the rules, the purpose
of the rule discovery system is to eliminate low-fitted rules and to replace
them by hopefully better ones. The fitness of a rule is simply its strength.
Since the classifiers of a Holland classifier system themselves are strings,
the application of a genetic algorithm to the problem of rule induction is
straightforward, though many variants are reasonable. Almost all variants
have in common that the GA is not invoked in each time step, but only
every n-th step, where n has to be set such that enough information about
the performance of new classifiers can be obtained in the meantime.

A. Geyer-Schulz [11], for instance, suggests the following procedure, where
the strength of new classifiers is initialized with the average strength of the
current rule base:

1. Select a subpopulation of a certain size at random.

2. Compute a new set of rules by applying the genetic operations selection,
crossing over, and mutation to this subpopulation.

3. Merge the new subpopulation with the rule base omitting duplicates
and replacing the worst classifiers.

This process of acquiring new rules has an interesting side effect. It is
more than just the exchange of parts of conditions and actions. Since we



98 7. Classifier Systems

0

10

20

100

150

200

250

300

100

150

200

250

300

Figure 7.4: A graphical representation of the table shown in Figure 7.3.

have not stated restrictions for manipulating tags, the genetic algorithm can
recombine parts of already existing tags to invent new tags. In the following,
tags spawn related tags establishing new couplings. These new tags survive
if they contribute to useful interactions. In this sense, the GA additionally
creates experience-based internal structures autonomously.

7.3 Fuzzy Classifier Systems of the Michigan

Type

While classifier systems of the Michigan type have been introduced by J. H.
Holland already in the Seventies, their fuzzification awaited discovery many
years. The first fuzzy classifier system of the Michigan type was introduced
by M. Valenzuela-Rendón [28, 29]. It is, more or less, a straightforward
fuzzification of a Holland classifier system. An alternative approach has
been developed by A. Bonarini [5, 6], who introduced a different scheme of
competition between classifiers. These two approaches have in common that
they operate only on the fuzzy rules—the shape of the membership functions
is fixed. A third method, which was introduced by P. Bonelli and A. Parodi
[24], tries to optimize even the membership functions and the output weights
in accordance to payoff from the environment.
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7.3.1 Directly Fuzzifying Holland Classifier Systems

The Production System

We consider a fuzzy controller with real-valued inputs and outputs. The sys-
tem has, unlike ordinary fuzzy controllers, three different types of variables—
input, output, and internal variables. As we will see later, internal variables
are for the purpose of storing information about the near past. They corre-
spond to the internally tagged messages in Holland classifier systems. For
the sake of generality and simplicity, all domains of all variables are intervals
transformed to the unit interval [0, 1]. For each variable, the same number of
membership functions n is assumed. These membership functions are fixed
at the beginning. They are not changed throughout the learning process.
M. Valenzuela-Rendón took bell-shaped function dividing the input domain
equally.

A message is a binary string of length l + n, where n is the number of
membership functions defined above and l is the length of the prefix (tag),
which identifies the variable to which the message belongs. A perfect choice
for l would be dlog2 Ke, where K is the total number of variables we want to
consider. To each message, an activity level, which represents a truth value,
is assigned. Consider, for instance, the following message (l = 3, n = 5):

010︸︷︷︸
=2

: 00010 → 0.6

Its meaning is “Input value no. 2 belongs to fuzzy set no. 4 with a degree
of 0.6”. On the message list, only so-called minimal messages are used, i.e.
messages with only one 1 in the right part which corresponds to the indices
of the fuzzy sets.

Classifiers again consist of a fixed number r of conditions and an action
part. Note that, in this approach, no wildcards and no “–” prefixes are used.
Both condition and action part are also binary strings of length l + n, where
the tag and the identifiers of the fuzzy sets are separated by a colon. The
degree to which such a condition is matched is a truth value between 0 and 1.
The degree of matching of a condition is computed as the maximal activity
of messages on the list, which have the same tag and whose 1s are a subset of
those of the condition. Figure 7.5 shows a simple example how this matching
is done. The degree of satisfaction of the whole classifier is then computed as
the minimum of matching degrees of the conditions. This value is then used
as the activity level which is assigned to the output message (corresponds to
Mamdani inference).
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Figure 7.5: Matching a fuzzy condition.

The whole rule base consists of a fixed number m of such classifiers.
Similarly to Holland classifier systems, one execution step of the production
system is carried out as follows:

1. The detectors receive crisp input values from the environment and
translate them into minimal messages which are then added to the
message list.

2. The degrees of matching are computed for all classifiers.

3. The message list is erased.

4. The output messages of some matched classifiers (see below) are placed
on the message list.

5. The output messages are translated into minimal messages. For in-
stance, the message 010 : 00110 → 0.9 is split up into the two messages
010 : 00010 → 0.9 and 010 : 00100 → 0.9.

6. The effectors discard the output messages (referring to output vari-
ables) from the list and translate them into instructions to the envi-
ronment.

Step 6 is done by a slightly modified Mamdani inference: The sum (in-
stead of the maximum or another t-conorm) of activity levels of messages,
which refer to the same fuzzy set of a variable, is computed. The membership
functions are then scaled with these sums. Finally, the center of gravity of
the “union” (i.e. maximum) of these functions, which belong to one variable,
is computed (Sum-Prod inference).
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Credit Assignment

Since fuzzy systems have been designed to model transitions, a probabilistic
auction process as discussed in connection with Holland classifier systems,
where only a small number of rules is allowed to fire, is not desirable. Of
course, we assign strength values to the classifiers again.

If we are dealing with a one-stage system, in which payoff for a certain ac-
tion is received immediately, where no long-term strategies must be evolved,
we can suffice with allowing all matched rules to post their outputs and shar-
ing the payoff among the rules, which were active in the last step, according
to their activity levels in this step. For example, if St is the set of classifiers,
which have been active at time t, and Pt is the payoff received after the t-th
step, the modification of the strengths of firing rules can be defined as

ui,t+1 = ui,t + Pt ·
ai,t∑

Rj∈St

aj,t

∀Ri ∈ St, (7.1)

where ai,t denotes the activity level of the classifier Ri at time t. It is again
possible to reduce the strength of inactive classifiers by a certain tax.

In the case, that the problem is so complex that long-term strategies
are indispensable, a fuzzification of the bucket brigade mechanism must be
found. While Valenzuela-Rendón only provides a few vague ideas, we state
one possible variant, where the firing rules pay a certain value to their sup-
pliers which depends on the activity level. The strength of a classifier, which
has recently been active in time step t, is then increased by a portion of the
payoff as defined in (7.1), but it is additionally decreased by a value

Bi,t = cL · ui,t · ai,t,

where cL ∈ [0, 1] is the learning parameter. Of course, it is again possible to
incorporate terms which depend on the specifity of the classifier.

This “fuzzy bid” is then shared among the suppliers of such a firing
classifier according to the amount they have contributed to the matching of
the consumer. If we consider an arbitrary but fixed classifier Rj, which has
been active in step t and if we denote the set of classifiers supplying Rj,
which have been active in step t − 1, with Sj,t, the change of the strengths
of these suppliers can be defined as

uk,t+1 = uk,t + Bj,t ·
ak,t−1∑

Rl∈Sj,t

al,t−1

for all Rk ∈ Sj,t.
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Rule Discovery

The adaptation of a genetic algorithm to the problem of manipulating clas-
sifiers in our system is again straightforward. We only have to take special
care that tags in conditional parts must not refer to output variables and that
tags in the action parts of the classifiers must not refer to input variables of
the system.

Analogously to our previous considerations, if we admit a certain number
of internal variables, the system can build up internal chains automatically.
By means of internal variables, a classifier system of this type does not only
learn stupid input-output actions, it also tries to discover causal interrela-
tions.

7.3.2 Bonarini’s ELF Method

In [5], A. Bonarini presents his ELF (evolutionary learning of fuzzy rules)
method and applies it to the problem of guiding an autonomous robot. The
key issue of ELF is to find a small rule base which only contains important
rules. While he takes over many of M. Valenzuela-Rendón’s ideas, his way of
modifying the rule base differs strongly from Valenzuela-Rendón’s straight-
forward fuzzification of Holland classifier systems.

Bonarini calls the modification scheme “cover-detector algorithm”. The
number of rules can be varied in each time step depending on the number
of rules which match the actual situation. This is done by two mutually
exclusive operations:

1. If the rules, which match the actual situation, are too many, the worst
of them is deleted.

2. If there are too few rules matching the current inputs, a new rule, the
antecedents of which cover the current state, is added to the rule base
with randomly chosen consequent value.

The genetic operations are only applied to the consequent values of the rules.
Since the antecedents are generated on demand in the different time steps,
no taxation is necessary.

Obviously, such a simple modification scheme can only be applied to so-
called one-stage problems, where the effect of each rule can be observed in the
next time step. For applications where this is not the case, e.g. backing up a
truck, Bonarini introduced an additional concept to his ELF algorithm—the
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notion of an episode, which is a given number of subsequent control actions,
after which the reached state is evaluated (for details, see [6]).

7.3.3 Online Modification of the Whole Knowledge Base

While the last two methods only manipulate rules and work with fixed mem-
bership functions, there is at least one variant of fuzzy classifier systems
where also the shapes of the membership functions are involved in the learn-
ing process. This variant was introduced by A. Parodi and P. Bonelli in [24].
Let us restrict to the very basic idea here: A rule is not encoded with in-
dices pointing to membership functions of a given shape. Instead, each rule
contains codings of fuzzy sets like the ones we discussed in 5.1.
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